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Abstract

The class of rank-additive (RA) axiologies includes rank-weighted utilitarian, gen-
eralized utilitarian, and rank-discounted generalized utilitarian rules; it is a flexible
framework for population ethics. This paper axiomatically characterizes RA axiolo-
gies and studies their properties in two frameworks: the actualist framework (which
only tracks the utilities of people who actually exist), and the possibilist framework
(which also assigns zero utilities to people who don’t exist). The axiomatizations
and properties are quite different in the two frameworks. For example, actualist RA
axiologies can simultaneously evade the Repugnant Conclusion and promote equality,
whereas in the possibilist framework, there is a tradeoff between these two desider-
ata. On the other hand, possibilist RA axiologies satisfy the Positive Expansion and
Negative Expansion axioms, whereas the actualist ones don’t.
Keywords: Population ethics; Repugnant Conclusion; additively separable; rank-
dependent; utilitarian.
JEL class: D63, D71.

1 Introduction

Present-day social and economic policies will not only affect the quality of life of future
generations; they will affect the number of people who exist in these generations. Thus,
policy makers face a tradeoff between the sheer number of future people and their quality
of life. Population ethics is the analysis of such tradeoffs using tools from social choice
theory and moral philosophy. It arose as a response to the Repugnant Conclusion, an
ethical paradox first identified by Derek Parfit (1984). Parfit noted that, under seemingly
plausible normative hypotheses, we should prefer a future where a hundred trillion people
lead wretched lives that are barely worth living, over a world where a much smaller number
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(say, ten billion) lead lives of much higher quality. This disturbing observation is not only
a reductio ad absurdum of classical utilitarianism: it also afflicts a wide variety of other
moral systems, particularly versions of welfarist consequentialism. A variety of solutions
have been proposed, but none are entirely satisfactory. Recent surveys of this literature
are Arrhenius et al. (2017) and Greaves (2017). For book-length treatments, see Ryberg
and Tännsjö (2004), Blackorby et al. (2005), Arrhenius (2018), and Arrhenius and Bykvist
(2019).

Tyler Cowen (2004) observed that the Repugnant Conclusion has a similar structure to
the Saint Petersburg Paradox: in both cases, the paradox arises when a valuable thing is
allowed to become minuscule in one “dimension”, as long as it simultaneously grows huge
along some other dimension. Cowen proposed that such paradoxes could be avoided by
insisting that the value of any single dimension be bounded. But he did not formalise this
idea. Earlier and independently, Sider (1991) had proposed a rule of population ethics he
called “geometrism”, which avoids the Repugnant Conclusion through precisely the bound-
edness strategy suggested by Cowen. But Sider was well aware of geometrism’s shortcom-
ings (in particular, its anti-egalitarianism), and he introduced it only as a counterexample
to a conjectured impossibility result, not as a serious alternative. More recently, Asheim
and Zuber (2014, 2017) have studied and axiomatically characterized rank-discounted gen-
eralized utilitarianism; like Sider’s geometrism, it avoids the Repugnant Conclusion via
Cowen’s boundedness strategy, but unlike geometrism, it is also inequality-averse.

In this paper, I will introduce and axiomatically characterize a family of population
ethical theories which generalize both Sider (1991) and Asheim and Zuber (2014, 2017).
To define this family, I need some terminology. A social outcome specifies both what
people exist, and what the lifetime utility of each person is. A population axiology is an
ordering over social outcomes.1 Thus, it embodies not only ethical judgements about the
tradeoffs we must make between the lifetime utilities of different people (like an ordinary
value function), but also ethical judgements about tradeoffs we must make between these
lifetime utilities and overall population size. For example, a population axiology might
judge that it is better to have a relatively small population of relatively happy people,
than to have a much larger population of less happy people.

I will assume that lifetime utilities are measured on a cardinal scale, where a lifetime
utility of zero is the lower limit for a life which is “worth living”. If someone’s lifetime
utility is positive, then this means that, for her, it is better to exist than not to exist.
But if her lifetime utility is negative, then this means that, for her, it would have been
better to not exist at all. Note that the fact that a person’s life is worth living for her
does not necessarily imply that it is ethically better that she exist; it may be that adding
a particularly unhappy life to an already populous world is not an ethical improvement,
even if the person who lives that life still regards it as worth living, on the balance. This is
one way in which population axiologies may deviate from standard social welfare orders.2

1 I use the term axiology rather than the more conventional social welfare order because this ordering
may encode ethical judgements over population size in addition to ethical judgements over welfare distri-
butions within a fixed population. Thus, it is not necessarily appropriate to interpret it as assessing “social
welfare”. For this and other reasons, axiology is the prefered term in the moral philosophy literature.

2In these assessments, it is important that we work with lifetime utilities, not momentary utilities.
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I will consider two kinds of population axiologies in this paper. They differ in the
precise information encoded in the social outcome. In a possibilist axiologies, a social
outcome assigns a lifetime utility to all people who could possibly exist. If someone does
not actually exist, then she is simply assigned a lifetime utility of zero in this representation.
Thus, possibilist axiologies do not distinguish between an outcome where Alice exists but
has a lifetime utility of zero (i.e. a life so wretched that she is indifferent to not existing),
and an otherwise identical outcome where Alice simply doesn’t exist at all. In contrast, in
an actualist axiology, each social outcome specifies precisely which people exist. Thus, a
clear distinction is made between an outcome where Alice exists but has a lifetime utility
of zero, and an outcome where she doesn’t exist.

In both the actualist and possibilist frameworks, I will investigate a family of axiolo-
gies that I call rank-additive. These are axiologies which admit an additively separable
representation, like the classical utilitarian or prioritarian value functions. Each lifetime
utility is transformed by a continuous increasing function before summation. However,
people are ranked in order from lowest to highest lifetime utility, and different transfor-
mations can be applied to different entries in this ranking. Thus, the person with the
highest lifetime utility may have her utility transformed in a different way than a person
with a lower lifetime utility, before summation. This generalizes rank-weighted utilitarian
(or generalized Gini) social welfare orders (Weymark, 1981; Yaari, 1988). But like Ebert
(1988), it allows different utility transformation functions (as opposed to merely different
multiplicative weights) to be applied at different positions in the ranking.

In defining rank-additive axiologies, there is a key difference between the actualist and
possibilist frameworks. In an actualist axiology, we only rank, transform, and sum the
lifetime utilities of the (finite) set of people who actually exist. By contrast, in a possibilist
axiology, we rank, transform, and sum the lifetime utilities of everyone who could possibly
exist —this includes a finite collection of nonzero utilities (among those who actually exist)
and also an infinite collection of zero utilities (of those who do not exist). These zero util-
ities contribute nothing to the sum itself, but they have implications for how we rank the
utilities of the people who do exist. Because of this, rank-additive axiologists have different
functional forms in the actualist and possibilist frameworks, and admit different axiomatic
characterizations. In particular, possibilist rank-additive axiologies always satisfy the ax-
ioms of Positive Expansion and Negative Expansion, which say that it is always good to add
another person whose lifetime utility is above zero, and never good to add another person
whose lifetime utility is below zero. This means they evade the Sadistic Conclusion, a
paradox which afflicts critical-level utilitarianism, average utilitarianism, and many other
proposed solutions to the Repugnant Conclusion (Arrhenius, 2000). By contrast, actualist
rank-additive axiologies almost never satisfy Positive Expansion and Negative Expansion,
and hence frequently lead to the Sadistic Conclusion. On the other hand, actualist rank-
additive axiologies easily reconcile inequality aversion with avoidance of the Repugnant

Thus, a judgement that “It would be ethically better if Alice did not exist” does not imply that Alice
should die —rather, it means it would have been better if Alice had never been born. Now that Alice
does exist, the axiological ordering will be increasing with respect to her lifetime utility, which in turn is
typically an increasing function of her lifespan.
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Conclusion, whereas possibilist rank-additive axiologies do not. Sider’s (1991) geometrism
is a possibilist rank-additive axiology. Asheim and Zuber’s (2014, 2017) rank-discounted
utilitarianism is an actualist rank-additive axiology.

Most of the literature in population ethics adopts the actualist framework (e.g. Blacko-
rby et al. 2005). Perhaps this is because of the suspicion that there is something nonsensical
about imputing a utility to someone in a scenario where she does not even exist, or making
welfare comparisons between scenarios where she exists and scenarios where she doesn’t.
But several authors have argued convincingly that one can make such welfare comparisons,
once they are construed in the right way (Holtug 2001; Roberts 2003, §4; Adler 2008, §III.A;
Adler 2019, §II.A; Arrhenius and Rabinowicz 2010, 2015; Fleurbaey and Voorhoeve 2015,
§3). So possibilism cannot simply be rejected as logically incoherent. The choice between
the possibilist and actualist frameworks thus turns on which of them offers more attractive
solutions to the central problems of population ethics. As we shall see, each framework
has advantages and disadvantages.

The remainder of the paper is organized as follows. Section 2 concerns possibilist
population axiologies. Section 2.1 introduces the formal framework and key examples.
Section 2.2 contains the first main result of the paper: an axiomatic characterization of
possibilist rank-additive axiologies. Section 2.3 contains further results, such as neces-
sary and sufficient conditions for these axiologies to be inequality-averse and to evade the
Repugnant Conclusion. Section 3 concerns actualist population axiologies, and has a sim-
ilar structure: Section 3.1 introduces the framework and key examples, while Section 3.2
contains the second main result of the paper: an axiomatic characterization of actualist
rank-additive axiologies. Section 3.3 contains further results. Section 4 discusses a major
problem confronting all rank-additive population axiologies —their violation of the axiom
of Existence Independence —and proposes some ways of mitigating this problem. Finally,
Section 5 discusses some undesirable properties of rank-additive axiologies.

2 Possibilist axiologies

2.1 Definitions and examples

Let I be an infinite set, whose elements represent all the people who could ever exist. Let
RI be the set of all infinite I-indexed sequences r “ priqiPI of real numbers. For all i P I,
interpret ri as the lifetime utility of individual i. If ri ą 0, then overall, i has a life worth
living. If ri ă 0, then overall, i has a life not worth living —it would have been better
if she had never existed at all. If ri “ 0, then i’s life is indifferent to nonexistence. This
is usually refered to as the neutral level of lifetime utility. We will also set ri “ 0 in any
scenario where i does not exist; the possibilist framework does not distinguish between
nonexistence, and existence with a neutral lifetime utility.

Let X be the set of all elements of RI with only finitely many nonzero entries. An
element of X represents a complete specification of all the lifetime utilities of all the people
who will ever exist. (I assume this number to be finite.) I will refer to elements of X
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as social outcomes. A possibilist axiology is a preference order (i.e. complete, transitive,
reflexive binary relation) ľ on X .

If π : IÝÑI is any bijection, then define π˚ : RIÝÑRI by setting π˚prq :“ prπpiqqiPI
for all r “ priqiPI in RI . Clearly, πpX q “ X , and π restricted to X defines a bijection from
X to itself. We will be interested in axiologies satisfying the following axiom:

Anonymity. If π : IÝÑI is any bijection, and x P X , then x « π˚pxq.

Let R` :“ tr P R; r ě 0u and let R´ :“ tr P R; r ď 0u. Let R8` be the set of all infinite
sequences r “ prnq

8
n“1 of nonnegative numbers. Let R9` be the set of all elements of R8` with

only finitely many nonzero entries, and let R9Ó` be the set of all nonincreasing sequences in
R9`. Likewise define R8´ and R9´, and let R9Ò´ be the set of all nondecreasing sequences in
R9´. For any x P X , let x`1 ě x`2 ě x`3 ě ¨ ¨ ¨ ě x`N ą 0 be all the positive entries of x, listed
with multiplicity in decreasing order, and define x` :“ px`1 , x

`
2 , x

`
3 , . . . , x

`
N , 0, 0, . . .q, an

element of R9Ó` . Likewise, let x´1 ď x´2 ď x´3 ď ¨ ¨ ¨ ď x´N ă 0 be all the negative entries of x,
listed with multiplicity in increasing order, and define x´ :“ px´1 , x

´
2 , x

´
3 , . . . , x

´
M , 0, 0, . . .q,

an element of R9Ò´ . Now define the function φ : XÝÑR9Ó` ˆR
9Ò
´ by setting φpxq :“ px`,x´q,

for any x P X . Clearly, φ is a surjection. If ľ˚ is any preference order on R9Ó` ˆR9Ò´ , then
we can define an axiology ľ on X by the formula:

for all x,y P X
´

x ľ y
¯

ðñ

´

φpxq ľ˚ φpyq
¯

. (2A)

It is easy to see that ľ satisfies Anonymity: if π : IÝÑI is any bijection, and x1 “ π˚pxq,
then φpx1q “ φpxq, so that x « x1. Conversely, if ľ is an axiology on X satisfying
Anonymity, then there is a unique preference order ľ˚ on R9Ó` ˆ R9Ò´ satisfying formula
(2A). In other words, there is a natural bijective correspondence between preference orders
on R9Ó` ˆ R9Ò´ and axiologies on X satisfying Anonymity.

A value function is a function W : XÝÑR.3 It is rank-additive (RA) if there are contin-
uous, increasing functions φ`n : R`ÝÑR` and φ´n : R´ÝÑR´ with φ`n p0q “ 0 “ φ´n p0q for
all n P N, such that for any x P X , we have

W pxq “

8
ÿ

n“1

φ`n px
`
n q `

8
ÿ

n“1

φ´n px
´
n q. (2B)

(There are only finitely many nonzero summands, by the definition of X .) An axiology ľ

is rank-additive if it is represented by a rank-additive value function. For example:

• Suppose that φ˘n prq “ r for all r P R˘ and all n P N. Then we obtain the classical
utilitarian value function, defined by

W pxq “

8
ÿ

n“1

x`n `

8
ÿ

n“1

x´n “
ÿ

iPI
xi, for all x P X . (2C)

3I use the term value function rather than the more conventional social welfare function for the same
reason I use the term axiology rather than social welfare order; see footnote 1.
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• Let φ : RÝÑR be a continuous, increasing function with φp0q “ 0. Suppose that
φ˘n prq “ φprq for all r P R˘ and all n P N. Then we obtain the generalized utilitarian
value function, defined by

W pxq “

8
ÿ

n“1

φpx`n q `
8
ÿ

n“1

φpx´n q “
ÿ

iPI
φpxiq, for all x P X . (2D)

In particular, if φ is strictly concave, then (2D) is called a prioritarian value function,
and exhibits inequality aversion.

• Let tc`n u
8
n“1 and tc´n u

8
n“1 be two sequences of positive constants. Suppose that

φ˘n prq “ c˘n r for all r P R˘ and all n P N. Then we obtain the rank-weighted
utilitarian value function (Weymark, 1981; Yaari, 1988):

W pxq “

8
ÿ

n“1

c`n x
`
n `

8
ÿ

n“1

c´n x
´
n , for all x P X . (2E)

• In particular, let β P p0, 1q, and suppose that φ˘n prq “ βn r for all r P R˘ and all
n P N. Then we obtain the geometric value function proposed by Sider (1991):

W pxq “

8
ÿ

n“1

βn x`n `

8
ÿ

n“1

βn x´n , for all x P X . (2F)

The classical utilitarian value function (2C) arises as a special case of generalized utili-
tarianism (with φpxq “ x) and rank-weighted utilitarianism (with c˘n “ 1 for all n P N).
Unfortunately, as is well-known, any generalized utilitarian value function (and in partic-
ular, the classical utilitarian value function) leads to Parfit’s Repugnant Conclusion. In
contrast, the rank-weighted utilitarian value function (2E) evades the Repugnant Con-
clusion, as long as the sequence tc`n u

8
n“1 decays quickly enough that

ř8

n“1 c
`
n ă 8 (see

Proposition 2.2(a) below). However, in this case, the rank-weighted utilitarian value func-
tion is anti-egalitarian among all people with positive lifetime utility (see Proposition 2.4
below). To reconcile inequality aversion with evasion of the Repugnant Conclusion, we will
need to consider rank-additive axiologies defined by other choices of functions tφ˘n u

8
n“1.

Rank additive axiologies have several attractive properties. For any x,y P X and
z P RN , write “y “ x Z z” if there exist distinct j1, j2, . . . , jN P I such that xjn “ 0 and
yjn “ zn for all n P r1 . . . N s, while xi “ yi for all i P Iztj1, j2, . . . , jNu. In other words,
y is obtained by adding to x exactly N new people, whose lifetime utilities are given by
pz1, . . . , zNq. For any r P R, we define xZ r :“ xZ z, where z is an outcome containing a
single individual with lifetime utility r. It is easily verified that any rank-additive possibilist
axiology satisfies the next four axioms.

Pareto. For all x,y P X , if xi ě yi for all i P I, then x ľ y. If, furthermore, xi ą yi for
some i P I, then x ą y.

Positive expansion (or Mere Addition). For any x P X and any r ą 0, xZ r ą x.
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Negative expansion. For any x P X and any r ă 0, xZ r ă x.

No Sadistic Conclusion. For any x P X , any N,M P N, and any y P RN
`` and z P RM

´´,
xZ y ą xZ z.

Positive expansion says it is always good to add another person whose life is worth living (i.e.
whose lifetime utility is positive). Negative expansion says it is always bad to add another
person whose life is not worth living (i.e. whose lifetime utility is negative). Both of these
are consequences of the Pareto axiom. Meanwhile, No Sadistic Conclusion is a consequence
of Positive expansion and Negative expansion; it means that rank-additive axiologies avoid a
well-known problem of average utilitarian and critical level generalized utilitarian principles
first identified by Arrhenius (2000). For any x P R9˘, let |x| denote the number of nonzero
entries in x. Rank additive axiologies also satisfy the next axiom.

Existence independence of the wretched. For all x,y P X and N,M P N such that |x`| “
|y`| “ N and |x´| “ |y´| “ M , and any z P R such that maxtx´M , y

´
Mu ď z ď

mintx`N , y
`
Nu, we have x ľ y if and only if xZ z ľ y Z z.

This axiom is similar to the axiom of Existence independence of Blackorby et al. (2005,§5.6),
but it only applies the people whose lifetime utilities are close to zero (“the wretched”).4

An important feature of RA possibilist axiologies is that individuals with positive life-
time utilities (i.e. lives worth living) are evaluated using the functions tφ`n u

8
n“1, whereas

individuals with negative lifetime utilities (i.e. lives not worth living) are evaluated using
tφ´n u

8
n“1. This gives us the freedom to treat lives which are not worth living in a com-

pletely different way than we treat lives worth living, in accord with many people’s ethical
intuitions. For example, if we augment a social outcome by adding a trillion wretched lives
that are barely worth living, then a rejection of the Repugnant Conclusion suggests that
the marginal gain in social welfare obtained by adding the trillionth such life is less than
the marginal gain from adding the first such life. But if we add a trillion lives of terrible
suffering that are clearly not worth living, then our ethical intuitions suggest that the ad-
dition of the trillionth such life adds just as much evil to the world as the first one. This
intuition is sometimes called the Asymmetry (Roberts, 2011). Since tφ`n u

8
n“1 and tφ´n u

8
n“1

can have different properties, it is easy to accommodate this intuition.
It seems natural to assume that tφ`n u

8
n“1 and tφ´n u

8
n“1 should both arise as restrictions

to R` and R´ of some common family of utility functions defined on all of R, as in
the generalized utilitarian value function in formula (2D). If they didn’t, and we treated
negative and positive utilities in a completely different way, then one might worry about
creating an “ethical discontinuity” in our treatment of an individual as her lifetime utility
changes from positive to negative. But this concern is misconceived. To understand this,
let x P X be a social outcome, and define x` “ px`1 , x

`
2 , x

`
3 , . . . , x

`
N , 0, 0, . . .q and x´ “

px´1 , x
´
2 , x

´
3 , . . . , x

´
M , 0, 0, . . .q as prior to statement (2A). If we imagine all the coordinates

of x of being arranged in decreasing order, then the (infinite) number of zero coordinates
will all appear between the coordinates of x` and those of x´. In other words,

x “ px`1 , x
`
2 , x

`
3 , . . . , x

`
N , 0, 0, 0, . . . . . . . . . . . . , 0, 0, 0, x

´
M , . . . , x

´
3 , x

´
2 , x

´
1 q.

4See Section 4 for further discussion of the Existence independence axiom.
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Observe that tφ`n u
8
n“1 deal with the coordinates at the left end of this infinite array, while

tφ´n u
8
n“1 deal with the coordinates at the right end. There is no reason to believe that

these two families of functions should have anything in common with one another. Indeed,
suppose we gradually reduce one individual’s lifetime utility, while holding all other utilities
constant. As her utility decreases, it is shuffled further and further rightward in the ordering
of x`1 , . . . , x

`
N . But when it passes from positive to negative, it jumps an infinite number

of positions rightward (leaping over the infinite number of zero coordinates), to become
part of x´M , . . . , x

´
1 . If there is an “ethical discontinuity” in our treatment of the person at

this moment, it can be attributed to this infinite jump.

2.2 Axiomatic Characterization

The first main result of the paper is an axiomatic characterization of rank-additive axi-
ologies in the possibilist framework. This will use the Anonymity and Pareto axioms intro-

duced in Section 2.1, along with two other axioms. For any N P N, let RNÓ
` :“ tr P RN ;

r1 ě r2 ě ¨ ¨ ¨ ě rN ě 0u, and let RNÒ
´ :“ tr P RN ; r1 ď r2 ď ¨ ¨ ¨ ď rN ď 0u. We can treat

RNÓ
` as a subset of R9Ó` in a natural way, by identifying the N -tuple px1, x2, . . . , xNq with

the sequence px1, x2, . . . , xN , 0, 0, . . .q. Likewise, we can treat RNÒ
´ as a subset of R9Ò´ . Note

that R2Ó
` Ă R3Ó

` Ă R4Ó
` Ă ¨ ¨ ¨ Ă R9Ó` and R2Ò

´ Ă R3Ò
´ Ă R4Ò

´ Ă ¨ ¨ ¨ Ă R9Ò´ . Furthermore,

R9Ó` “

8
ď

N“1

RNÓ
` and R9Ò´ “

8
ď

N“1

RNÒ
´ . Thus, R9Ó` ˆR9Ò´ “

8
ď

N“1

´

RNÓ
` ˆ RNÒ

´

¯

. (2G)

For all N P N, let ľN be the restriction of ľ˚ to RNÓ
` ˆ RNÒ

´ . The order ľ˚ is uniquely
determined by this sequence pľNq

8
N“1 of finite-population axiologies. The next two axioms

concern these orders. Note that RNÓ
` ˆ RNÒ

´ is a closed convex subset of RN ˆ RN “ R2N ;
endow it with the subspace topology it inherits from R2N . We need two more axioms.

Continuity. For every N P N, the order ľN is continuous on RNÓ
` ˆ RNÒ

´ .

Separability. For every N P N, and every pair of subsets J`,J´ Ď r1 . . . N s, there is a
preference order ľJ˘ defined on RJ` ˆ RJ´ such that, for any x “ px`,x´q and

y “ py`,y´q in RNÓ
` ˆ RNÒ

´ , if x`n “ y`n for all n P r1 . . . N szJ`, and x´n “ y´n for all
n P r1 . . . N szJ´, then x ľN y if and only if px`J` ,x

´
J´q ľJ˘ py

`
J` ,y

´
J´q.

5

These axioms are somewhat weaker than the familiar axioms with similar names: they
only apply to the restriction of ľ to a population of fixed, finite size N , and only compare
social outcomes that are comonotonic. Here is the first main result of the paper.

Theorem 1 Let ľ be a possibilist axiology on X . Then ľ satisfies Anonymity, Continuity,
Pareto and Separability if and only if it is rank-additive. Furthermore, in the representation
(2B), the functions tφ˘n u

8
n“1 are unique up to multiplication by a common scalar.

5Here, x˘J˘ “ px
˘
j qjPJ˘ , an element of RJ˘ . Strictly speaking, the order ľJ˘ need only be defined on

R
J`
Ó

` ˆ R
J´
Ò

´ . But it makes no difference if we suppose it is defined on all of RJ` ˆ RJ´ .
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2.3 Further results

I earlier noted that any rank-additive axiology satisfies the axiom Existence independence
of the wretched. We might also consider axiologies that satisfy the following axioms:

Top-independence in good worlds. For all x,y P X such that xi ě 0 and yi ě 0 for all i P I,
and all z P R with z ą maxtx`1 , y

`
1 u, we have x ľ y if and only if xZ z ľ y Z z.

Bottom-independence in bad worlds. For all x,y P X such that xi ď 0 and yi ď 0 for all
i P I, and all z P R with z ă maxtx´1 , y

´
1 u, we have x ľ y if and only if xZz ľ yZz.

The first axiom is like Asheim and Zuber’s (2014) axiom Existence independence of the best
off, except that it applies only in “good” worlds, where everyone’s lifetime utility is non-
negative. The second axiom is like Asheim and Zuber’s (2014) Existence independence of
the worst off, but it applies only in “bad” worlds.6 The next result says that these axioms
lead to something resembling Sider’s (1991) “geometric” value function from formula (2F).

Proposition 2.1 Let ľ be a rank-additive possibilist axiology with the value function (2B).

(a) ľ satisfies Top-independence in good worlds if and only if there is a continuous,
increasing function φ` : R`ÝÑR` and a constant β` ą 0 such that φ`n “ βn` φ

`

for all n P N.

(b) ľ satisfies Bottom-independence in bad worlds if and only if there is a continuous,
increasing function φ´ : R´ÝÑR´ and a constant β´ ą 0 such that φ´n “ βn´ φ

´

for all n P N.

If ľ satisfies both Top-independence in good worlds and Bottom-independence in bad worlds,
then Proposition 2.1 yields a variant of Sider’s geometric value function. But nothing in
Proposition 2.1 requires β` “ β´, nor are either β` or β´ required be less than 1.

Other restrictions on a rank-additive axiology ľ impose restrictions on the functions
tφ`n u

8
n“1 and tφ´n u

8
n“1. For any N P N, let 1N refer to an element of X such that exactly

N coordinates take the value 1, and all other coordinates are zero. (By Anonymity, it does
not matter which coordinates we choose.) For any r P R, r 1N refers to the corresponding
element of X such that exactly N coordinates take the value r, and all other coordinates
are zero. Consider the following axioms.

No Repugnant Conclusion. There exist r0 ą 0 and x P X such that x ą r0 1N for all N P N.

No utility monsters. For all N P N, there exists x P X such that x ą r 1N for all r ą 0.

The first axiom rules out Parfit’s Repugnant Conclusion. It says there is a minimum
positive utility r0 (representing a life which is technically worth living, but perhaps not
very pleasant) and a social outcome x (e.g. the population of a modern industrialized
country) which is better than any population of people with life utilities less than or

6Asheim and Zuber’s axioms are also stronger in that they compare populations of different sizes.
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Figure 1: The functions φ`n prq “ n ¨ p1´ expp´r{nqq, for n P t1 . . . 10u.

equal to r0, no matter how large this population becomes. The second axiom rules out
Nozick’s (1974) Utility Monster paradox. It says that for any finite population size N ,
there exists a social outcome (presumably involving a larger number of people) which is
better than any society which involves only N people, no matter how high their lifetime
utilities becomes. Thus, even if the first N people are somehow much more efficient at
converting resources into lifetime utility than everyone else, the value function does not
allow them to simply absorb unlimited amounts of resources from the rest of humanity to
boost their own utilities.

Proposition 2.2 Let ľ be a rank-additive possibilist axiology with the value function (2B).
Let W :“ suptW pxq; x P X u.

(a) ľ satisfies No Repugnant Conclusion if and only if there exists r0 ą 0 such that
8
ÿ

n“1

φ`n pr0q ă W .

(b) ľ satisfies No utility monsters if and only if lim
rÑ8

N
ÿ

n“1

φ`n prq ă W , for all N P N.

If W ă 8, then both these conditions are satisfied.

It is well-known that Nozick’s Utility Monster paradox can be evaded by using a gener-
alized utilitarian social welfare like (2D) when the function φ is bounded above. In partic-
ular, some prioritarian social welfare functions have this form. But Proposition 2.2(b) goes
beyond this trite observation, because in an RA value function, the functions tφ`n u

8
n“1 need

not be identical, so they need not have the same upper bound. For example, suppose that
φ`n prq :“ n ¨ p1´ expp´r{nqq for all n P N and all r P R`; then the condition of Proposition
2.2(b) is satisfied. However, as shown in Figure 1, we have suppφ`n pR`qq “ n for all n P N.

10
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The Repugnant Conclusion and the Utility Monster are both ethical paradoxes which
arise when a valuable thing is allowed to become extremely small in one “dimension”,
as long as it simultaneously grows extremely large along some other dimension. Perhaps
the earliest paradox of this kind is the Saint Petersburg Paradox. This suggests the next
axiom. Let W : XÝÑR denote a value function representing a population axiology ľ.

No Saint Petersburg Paradox. There is some ε ą 0 and some x P X such that for any y P X ,
W pxq is better than the expected W -value of any lottery which yields y with some
probability p ă ε, and yields the zero world with probability p1´ pq.

Proposition 2.3 Let ľ be a rank-additive possibilist axiology with the value function (2B).
Then ľ satisfies No Saint Petersburg Paradox if and only if suptW pxq; x P X u ă 8. In
this case, ľ automatically satisfies No Repugnant Conclusion and No utility monsters.

Let us now turn to questions of inequality. Let x,y P X . Say that y is a Pigou-Dalton
transform of x if there exist j, k P I and ε ą 0 such that yj “ xj ` ε ď yk “ xk ´ ε, while
yi “ xi for all other i P Iztj, ku. Consider the following axioms.

Inequality neutrality Let x,y P X . If y is a Pigou-Dalton transform of x, then y « x.

Inequality aversion Let x,y P X . If y is a Pigou-Dalton transform of x, then y ľ x.

Strict inequality aversion Let x,y P X . If y is a Pigou-Dalton transform of x, then y ą x.

Proposition 2.4 Let ľ be a rank-additive possibilist axiology with the value function (2B).

(a) ľ satisfies Inequality neutrality if and only if it is classical utilitarianism.

(b) ľ satisfies Inequality aversion if and only if, for all n,m P N, r, s P R and ε ą 0:

(i) If r ě 0 ě s, then φ`n pr ` εq ´ φ
`
n prq ď φ´mpsq ´ φ

´
mps´ εq.

(ii) If n ă m and r ě s ě ε ą 0, then φ`n pr ` εq ´ φ
`
n prq ď φ`mpsq ´ φ

`
mps´ εq.

(iii) If n ą m and s ď r ď ´ε ă 0, then φ´n pr ` εq ´ φ
´
n prq ď φ´mpsq ´ φ

´
mps´ εq.

Thus, for all q P R`, we have

φ`1 pqq ď φ`2 pqq ď φ`3 pqq ď ¨ ¨ ¨ ¨ ¨ ¨ ď ´φ
´
3 p´qq ď ´φ

´
2 p´qq ď ´φ

´
1 p´qq. (2H)

In particular, if tφ`n u
8
n“1 and tφ´n u

8
n“1 are differentiable, then for any positive non-

increasing sequence r1 ě r2 ě r3 ě ¨ ¨ ¨ ě 0 and negative nondecreasing sequence
s1 ď s2 ď s3 ď ¨ ¨ ¨ ď 0,

pφ`1 q
1
pr1q ď pφ

`
2 q
1
pr2q ď pφ

`
3 q
1
pr3q ď ¨ ¨ ¨ ¨ ¨ ¨ ď pφ

´
3 q
1
ps3q ď pφ

´
2 q
1
ps2q ď pφ

´
1 q
1
ps1q. (2I)

(c) ľ satisfies Strict inequality aversion if and only if all the statements in part (b)
hold with strict inequalities.

11
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Example 2.5. The generalized utilitarian value function (2D) satisfies Inequality aversion
if and only if the function φ is concave; it satisfies Strict inequality aversion if and only if
φ is strictly concave. The rank-weighted utilitarian value function (2E) satisfies Inequality
aversion if and only if c`1 ď c`2 ď c`3 ď ¨ ¨ ¨ ď c´3 ď c´2 ď c´1 ; it satisfies Strict inequality
aversion if and only if these inequalities are all strict. Note, however, that in a general rank-
additive value function, we do not need the functions tφ`n u

8
n“1 and tφ´n u

8
n“1 to be concave

to ensure inequality-aversion, as long as the conditions of Proposition 2.4 are satisfied. ♦

Unfortunately, by comparing Proposition 2.4 with Proposition 2.2(a), one sees that it
is impossible to simultaneously satisfy Inequality aversion and No Repugnant Conclusion.
If ε ą 0 is small, then No Repugnant Conclusion requires the sequence tφ`n pεqu

8
n“1 to be

summable, whereas Inequality aversion requires this sequence to be nondecreasing as in
(2H) —a contradiction. Thus, we must weaken Inequality aversion as follows. Let θ ą 0.
Let x,y P X . Say that y is a θ-restricted Pigou-Dalton transform of x if there exist j, k P I
and ε ą 0 such that yj “ xj ` ε ď yk “ xk ´ ε, while yi “ xi for all other i P Iztj, ku, and
furthermore, none of xj, yj, xk, yk is in the interval r0, θs. Consider the following axioms.

Restricted inequality neutrality. There is some θ ą 0 such that, for any x,y P X , if y is a
θ-restricted Pigou-Dalton transform of x, then y « x.

Restricted inequality aversion. There is some θ ą 0 such that, for any x,y P X , if y is a
θ-restricted Pigou-Dalton transform of x, then y ľ x.

Restricted strict inequality aversion. There is some θ ą 0 such that, for any x,y P X , if y is
a θ-restricted Pigou-Dalton transform of x, then y ą x.

This might seem like a rather stingy version of inequality aversion, since it specifically
excludes the wretched. But this is the only way to avoid the Repugnant Conclusion.

Proposition 2.6 Let ľ be a rank-additive possibilist axiology with the value function (2B).

(a) ľ satisfies Restricted inequality neutrality if and only if there are linear functions
φ˘ : R˘ÝÑR˘ and constants tcnu

8
n“1 such that for all n P N, φ´n “ φ´ and φ`n prq “

φ`prq ` cn for all r ě θ.

(b) ľ satisfies Restricted inequality aversion if and only if, for all n,m P N, all r, s P R
and all ε ą 0:

• If r ě θ ą 0 ě s, then φ`n pr ` εq ´ φ
`
n prq ď φ´mpsq ´ φ

´
mps´ εq.

• If n ă m and r ą s ą ε` θ ą 0, then φ`n pr ` εq ´ φ
`
n prq ď φ`mpsq ´ φ

`
mps´ εq.

• If n ą m and s ă r ă ´ε ă 0, then φ´n pr ` εq ´ φ
´
n prq ď φ´mpsq ´ φ

´
mps´ εq.

In particular, for all r ă 0, the sequence tφ´n prqu
8
n“1 is nonincreasing.

(c) ľ satisfies Restricted strict inequality aversion if and only if all the statements
in part (b) hold with strict inequalities. In this case, for all r P R´, the sequence
tφ´n prqu

8
n“1 is strictly decreasing.
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Figure 2: The functions φ`n prq in Example 2.7, for n P t1 . . . 5u

Note that Proposition 2.6 does not require the sequence tφ`n prqu
8
n“1 to be nondecreasing for

any r ą 0. In effect, φ`n must be inequality-averse for “sufficently large” lifetime utilities
(those above the threshold θ), but to block the Repugnant Conclusion, φ`n must become
increasingly inequality-seeking for “small” positive lifetime utilities (those in r0, θs), as
nÑ8. This is because the rank-additive value function (2B) must assign rapidly decreas-
ing marginal value to adding more wretched people to an already very populated world.
But to respect Positive expansion, ľ must still regard these wretched new lives as a net
improvement, as long as they are lives worth living. The only way to reconcile these two
conflicting imperatives is for the slope of φ`n near zero to decay to zero as nÑ8.7

Example 2.7. For all n P N, let an :“ lnp1` 1
n2 q, and then define

φ`n prq :“

"

an r if r P r0, 1s;
lnpr ` 1

n2 q if r ě 1.

(see Figure 2). If n is large, then an « 1{n2 (by the Taylor expansion of lnpxq around
x “ 1). Thus, for all r P r0, 1s, we have

ř8

n“1 φ
`
n prq « r ¨

ř8

n“1
1
n2 , which is finite; thus,

the hypothesis of Proposition 2.2(a) is satisfied, so the resulting RA axiology satisfies No
Repugnant Conclusion (for any r0 ă 1). Meanwhile, for all n P N, we have

pφ`n q
1
prq “

1

r ` 1{n2
, for all r P r1,8q.

7Similarly, Roemer (2004) proposed an axiom he called Triage, which treats individuals differently
depending on whether their utility is above or below a threshold corresponding to a “barely mediocre”
life. But Roemer was not concerned with population ethics; rather, he was concerned with reconciling
conflicting intuitions about distributional ethics which apply at different levels of utility.

13



 Electronic copy available at: https://ssrn.com/abstract=3231904 

Thus, φ`n is concave increasing on r1,8q, and furthermore, if n ă m and r ě s, then
pφ`n q

1prq ă pφ`mq
1psq. Thus, the second condition in Proposition 2.6(c) is satisfied (with

θ :“ 1). Observe that pφ`n q
1prq ă 1 for all n P N and r P R`. Thus, if φ´ : R´ÝÑR´ is

any concave, increasing, differentiable function such that φ´p0q “ 0 and pφ´q1p0q ě 1, and
we define φ´n :“ φ´ for all n P N, then the other two conditions of Proposition 2.6(c) are
also satisfied. Thus, the resulting axiology satisfies Restricted strict inequality aversion. ♦

3 Actualist axiologies

3.1 Definition and examples

As in Section 2, let I be an infinite set, whose elements represent all the people who
could ever possibly exist. Let R˚ :“ R \ tEu, where E is a special symbol representing
“nonexistence”. Let RI

˚ be the set of all I-indexed sequences r “ priqiPI of R˚. For all
i P I, if ri “ E, then this means i does not exist. On the other hand, if ri P R, then
interpret ri as the lifetime utility of individual i, with the same interpretation as in Section
2: if ri ą 0, then i’s life is worth living, if ri ă 0, then i’s life is not worth living, and if
ri “ 0, then i’s life is indifferent (for her) to nonexistence.

Let X9 be the set of all elements of RI
˚ where only finitely many entries are not equal

to E. (Some of these non-E entries may be zero.) An element of X9 represents a complete
specification of all the people who will ever exist (I assume this number to be finite), and
the lifetime utilities each of them. I will refer to elements of X9 as social outcomes. An
actualist axiology is a preference order on X9.8

If π : IÝÑI is any bijection, then define π˚ : RI
˚ÝÑRI

˚ by setting π˚prq :“ prπpiqqiPI
for all r “ priqiPI in RI

˚. Clearly, πpX9q “ X9, and π restricted to X9 defines a bijection
from X9 to itself. We will be interested in axiologies satisfying the following axiom:

Anonymity. If π : IÝÑI is any bijection, and x P X9, then x « π˚pxq.

For any x P X9, let |x| be the number of non-E entries in x. In particular, let H be the
empty world: the unique element of X9 such that all entries are E; then |H| “ 0. If |x| ą 0,
then we say x is nonempty. For any N P N, let XN :“ t|x| P RI

˚; |x| “ Nu, and let
RNÒ :“ tr P RN ; r1 ď r2 ď ¨ ¨ ¨ ď rNu be the set of all non-decreasing elements of RN . For
any x P XN , let xÒ :“ pxÒ1, x

Ò

2, . . . , x
Ò

Nq P RNÒ be the N -dimensional vector consisting of all
non-E entries of x, listed in non-decreasing order. Let R9Ò :“

Ť8

N“1RNÒ , and let ľ˚ be a
preference order on R9Ò . Then we can define an axiology ľ on X9 by the formula:

for all x,y P X9
´

x ľ y
¯

ðñ

´

xÒ ľ˚ yÒ
¯

. (3A)

It is easy to see that ľ satisfies Anonymity: if π : IÝÑI is any bijection, and y “ π˚pxq,
then yÒ “ xÒ, so that x « y. Conversely, if ľ is an axiology on X9 satisfying Anonymity,

8There is a risk of terminological confusion here: “moral actualism” has also been used to refer to
the philosophical claim that ethical judgements should be based only on the interests of the people who
actually exist. See Hare (2007) for a refutation of this position. This is not what I mean by the term.
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then there is a unique preference order ľ˚ on R9Ò satisfying formula (3A). In other words,
there is a natural bijective correspondence between preference orders on R9Ò and axiologies
on X9 satisfying Anonymity. Thus, we can work directly with preference orders on R9Ò .

For all n P N, let φn : RÝÑR be a continuous, increasing function. Define W : X9ÝÑR
as follows:

W pHq :“ 0, and W pxq :“

|x|
ÿ

n“1

φnpx
Ò
nq, for all nonempty x P X9. (3B)

This is called an ascending-rank additive (ARA) value function. The axiology it represents
is an ascending-rank additive axiology. For example:

• Suppose c P R, and φnprq “ r ´ c for all n P N and all r P R. Then formula (3B)
yields the critical level utilitarian value function. In particular, if c “ 0, then we get the
classical utilitarian value function. If φ : RÝÑR is a continuous, increasing function,
and φn “ φ for all n P N, then (3B) yields a generalized utilitarian value function:

W pHq :“ 0, and W pxq :“

|x|
ÿ

n“1

φpxÒnq, for all nonempty x P X9. (3C)

• Let tanu
8
n“1 be a decreasing sequence of positive constants, and suppose φnprq “ an r

for all n P N and all r P R. Then formula (3B) yields an ascending rank-weighted
utilitarian value function.

• More generally, let φ : RÝÑR be a continuous, increasing function, and suppose
φnprq “ an φprq for all n P N and all r P R. Then formula (3B) yields an ascending
rank-weighted generalized utilitarian value function:

W pxq :“

|x|
ÿ

n“1

an φpx
Ò
nq, for all x P X9 (3D)

These have been studied by Asheim and Zuber (2017). In particular, let β P p0, 1q,
and for all n P N, let φn :“ βn φ. Then formula (3D) becomes a rank-discounted
generalized utilitarian value function, which was axiomatically characterized by Asheim
and Zuber (2014):

W pxq :“

|x|
ÿ

n“1

βn φpxÒnq, for all x P X9 (3E)

In these examples, I do not assume that φnp0q “ 0. In other words, I do not assume that the
existence of an individual with a neutral level of lifetime utility is ethically equivalent to her
nonexistence. In fact, even if φnp0q “ 0 for all n P N, this would not be the case: introducing
a new person with zero lifetime utility can change the rankings of people who already
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exist, thereby changing overall social welfare in a complex way. Thus, ARA axiologies
are fundamentally different from the rank-additive axiologies introduced in Section 2; they
typically do not satisfy either Positive expansion or Negative expansion.

However, as noted by Asheim and Zuber (2014, 2016, 2017), ARA axiologies are attrac-
tive because they can avoid the Repugnant Conclusion while exhibiting inequality aversion
at all welfare levels. To see this, consider the ascending rank-weighted generalized utili-
tarian value function (3D). For simplicity, suppose φprq “ r for all r P R. If the sequence
tanu

8
n“1 is decreasing, then this value function is inequality-averse, because it assigns lower

marginal social welfare to the lifetime utilities of more fortunate individuals (who appear
higher in the ranking). Furthermore, Asheim and Zuber (2017, Proposition 6) show that
this value function avoids the Repugnant Conclusion if and only if

ř8

n“1 an ă 8. Clearly,
this summability condition is compatible with tanu

8
n“1 being a decreasing sequence —for

example, it is satisfied by the rank-discounted generalized utilitarian value function (3E).
I generalize this result in Proposition 3.2 below.

3.2 Axiomatic characterization

I will characterize ARA axiologies with six axioms. The first one is Anonymity. The next
three are quite standard, and also appeared in Section 2.2. To state these axioms, suppose
an axiology ľ on X9 satisfies Anonymity. Then it can represented by a preference order
ľ˚ on R9Ò . For any N P N, recall that RNÒ Ă R9Ò ; let ľN be the restriction of ľ˚ to RNÒ .
Note that RNÒ is a closed, convex subset of RN ; endow it with the subspace topology it
inherits from RN . The next three axioms concern the preference orders tľNu

8
N“1.

Continuity. For every x P X9, and every N P N, the upper contour sets tyÒ; y P XN and
x ĺ yu and the lower contour sets tyÒ; y P XN and x ľ yu are closed subsets of RNÒ .

Pareto. For every N P N and for all x,y P RNÒ , if xn ě yn for all n P r1 . . . N s, then
x ľN y. If, furthermore, xn ą yn for some n P r1 . . . N s, then x ąN y.

Separability. For every N P N and every subset J Ď r1 . . . N s, there is a preference order
ľJ defined on RJ such that, for any x,y P RNÒ , if xn “ yn for all n P r1 . . . N szJ ,
then x ľN y if and only if xJ ľJ yJ .9

Note that Continuity is slightly stronger than requiring the orders ľN to be continuous:
it also requires closure of contour sets determined by elements outside of XN . For any
x P X9, let maxpxq be the maximal lifetime utility of any person in the social outcome x.
(Equivalently, if xÒ “ pxÒ1, . . . , x

Ò

Nq, then maxpxq “ xÒN .) Here is the fifth axiom.

Top-independence. For all x,y P X9 with |x| “ |y| and all z P R with z ě maxtmaxpxq,maxpyqu,
we have x ľ y if and only if xZ z ľ y Z z.

9Here, xJ “ pxjqjPJ , an element of RJ . Strictly speaking, the order ľJ need only be defined on RJÒ .
But it makes no difference if we suppose it is defined on all of RJ .
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(Asheim and Zuber (2014) call this Existence independence of the best off.) To formulate
the last axiom, we need some notation. Let x P X9, let N :“ |x|, let n P r1 . . . N s, and
let a :“ xÒn. Let b P R, with xÒn´1 ď b ď xÒn`1.

10 Define x
pa

n
;bq

to be the unique element

y P X such that |y| “ |x|, yÒn “ b, and yÒm “ xÒm for all other m P r1 . . . N sztnu. (Note that
“x
pa

n
;bq

” is not well-defined unless |x| ě n, xÒn “ a and xÒn´1 ď b ď xÒn`1.)

Now let n ă m P N, and let a ă b ă c ă d P R. I will write pa
n
; bq « pc

m
; dq if there

exists x P X9 such that x
pa

n
;bq

« x
pc

m
;dq

. This means that switching a to b in coordinate
n is “ethically equivalent” to switching c to d in coordinate m. If ľ is represented by a
value function W , then pa

n
; bq « pc

m
; dq if the change in W induced by switching a to

b in the nth coordinate is exactly equal to the change in W induced by switching c to
d in the mth coordinate. If W has an ascending-rank additive representation (3B), then
pa

n
; bq « pc

m
; dq if and only if φnpbq ´ φnpaq “ φmpdq ´ φmpcq. Here is the last axiom:

Tradeoff consistency. For any n ă m P N, and any a ă b ă c ă d P R such that pa
n
; bq «

pc
m
; dq, and any y, z P X9, such that yÒn “ a, yÒn´1 ď b ď yÒn`1, zÒm “ c, and

zÒm´1 ď d ď zÒm`1, if y « z, then y
pa

n
;bq

« z
pc

m
;dq

.

Note that this axiom does not assume that |y| “ |z|. It says: if the act of switching a to
b in coordinate n is “ethically equivalent” to the act of switching c to d in coordinate m
when both switches are applied to the same outcome x, then this same ethical equivalence
should also be observed when these switches are applied to two different outcomes y and z,
possibly with different population sizes. Finally, we need the following structural condition.

Neutral population growth. For all N P N, there exists some x P XN such that x « H.

This condition is natural and easily satisfied. For example, if ľ is a rank-weighted gener-
alized utilitarian axiology as in (3D), then it satisfies Neutral population growth if and only
if φprq “ 0 for some r P R. Meanwhile, if ľ is an ARA axiology represented by (3B), then
it satisfies Neutral population growth if φ1 is unbounded below, while φn takes at least some
positive values for all n ě 2. Here is the second main result of the paper.

Theorem 2 Let ľ be an actualist axiology satisfying Neutral population growth on X9.
Then ľ satisfies Anonymity, Continuity, Pareto, Separability, Top-independence, and Tradeoff
consistency if and only if it is ascending rank additive. In the representation (3B), the
functions tφnu

8
n“1 are unique up to multiplication by a common scalar.

3.3 Further results

Let x P X9 and let c P R. In the terminology of Blackorby et al. (2005), c is a critical level
for x if adding a new person with lifetime utility c to x is an ethically neutral act. By
the Pareto axiom, such a critical level is unique, if it exists. For example, in the classical
utilitarian population axiology, c “ 0 for all x P X9 . In the average utilitarian axiology,

10Here we adopt the notational convention that xÒ0 :“ ´8 and xÒN`1 “ 8.
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c is the average lifetime utility in x. The ARA axiologies characterized in Theorem 2 do
not necessarily possess such critical levels for every social outcome. In other words, they
do not necessarily satisfy the following axiom:

Critical levels. For any x P X9, there exists c P R (depending on x) with x « xZ c.

This axiom says that there is no outcome x so bad that adding any new person to x is
always considered an improvement, or so good that adding any new person to x is always
considered a deterioration. Suppose ľ is an ARA axiology defined by a collection of
functions φ :“ tφnu

8
n“1. To ensure that ľ satisfies Critical levels, we must impose some

conditions on φ. One might think that it is sufficient to require, for all n P N, the existence
of some cn P N with φnpcnq “ 0. But this is not quite sufficient, as we will now see. For all
n P N, define the function δφn : RÝÑR by δφnprq :“ φn`1prq ´ φnprq. Then define

Spφq :“ sup

#

N
ÿ

n“1

δφnpxnq ; N P N and x1 ď x2 ď ¨ ¨ ¨ ď xN

+

. (3F)

Proposition 3.1 Let ľ be an ARA axiology on X9 with representation (3B), such that
for all n P N, there is some cn P N with φnpcnq “ 0. Then ľ satisfies Critical levels if and
only if (1) infpφ1pRqq ď ´Spφq, and (2) if infpφ1pRqq “ ´Spφq, then the supremum in
formula (3F) is never obtained.

In most cases, the condition in Proposition 3.1 is easily satisfied. For example, if φ1

is unbounded below (so that infpφ1pRqq “ ´8), then the condition is automatically true.
Meanwhile, in a generalized utilitarian axiology (3C), we have Spφq “ 0, so the condition
simply requires that that infpφ1pRqq ă 0.

Suppose that ľ is as in Proposition 3.1. Then for any N P N and x P X9, if |x| “ N´1
and maxpxq ď cN , then x « xZ cN . In other words, adding a person with lifetime utility
cN to the world is an ethically neutral act, as long as everyone who already exists has
an even lower level of lifetime utility. This is similar to the axiom Existence of a critical
level employed by Asheim and Zuber (2014) in their axiomatic characterization of rank-
discounted generalized utilitarian axiologies, but weaker: Asheim and Zuber additionally
require that cN “ cM for all N,M P N.

As observed by Asheim and Zuber (2014), an ARA axiology can reconcile inequality
aversion with evasion of the Repugnant Conclusion by assigning lower marginal social
welfare to the lifetime utility of the better-off individuals in any social outcome. The next
result makes this precise. It parallels Propositions 2.2 and 2.4.

Proposition 3.2 Let ľ be an ARA axiology with the value function (3B).

(a) ľ satisfies No Repugnant Conclusion if and only if there exists r ą 0 such that
8
ÿ

n“1

φnprq ă 8.
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(b) ľ satisfies Inequality aversion if and only if for all n,m P N with n ě m, all
r, s P R with r ě s, and all ε ą 0, we have φnpr` εq ´ φnprq ď φmpsq ´ φmps´ εq. In
particular, for all r P R`, we have φ1prq ě φ2prq ě φ3prq ě ¨ ¨ ¨

Furthermore, if tφnu
8
n“1 are differentiable, then for any nondecreasing sequence r1 ď

r2 ď r3 ď ¨ ¨ ¨ of real numbers, we have φ11pr1q ě φ12pr2q ě φ13pr3q ě ¨ ¨ ¨

(c) ľ satisfies Strict inequality aversion if and only if all the statements in part (b)
hold with strict inequalities.

There are also versions of Proposition 2.2(b) and 2.3 for ARA axiology (for avoiding utility
monsters and the St. Petersburg Paradox), but they are obvious, and are left to the reader.

Example 3.3. Let φ : RÝÑR be a concave increasing function, let tanu
8
n“1 be a non-

increasing sequence of positive constants, and suppose W is the ascending rank-weighted
generalized utilitarian value function (3D). Then Proposition 3.2(b) says that ľ satisfies
Inequality aversion. If

ř8

n“1 an ă 8, then Asheim and Zuber (2017) say that ľ is proper. In
this case, Proposition 3.2(a) says that ľ satisfies No Repugnant Conclusion. In particular,
if β P p0, 1q, and W is the rank-discounted generalized utilitarian value function (3E), then
ľ satisfies both Strict inequality aversion and No Repugnant Conclusion. ♦

For any N P N, let RNÓ :“ tr P RN ; r1 ě ¨ ¨ ¨ ě rNu be the set of all non-increasing
elements of RN . Let R9Ó :“

Ť8

N“1RNÓ . For any x P XN , let xÓ :“ pxÓ1, . . . , x
Ó

Nq P RNÓ be
the N -dimensional vector of all non-E entries of x, listed in non-increasing order. For all
n P N, let φn : RÝÑR be continuous and increasing. Define W : X9ÝÑR by:

W pHq :“ 0, and W pxq :“

|x|
ÿ

n“1

φnpx
Ó
nq, for all nonempty x P X9.

This is called a descending-rank additive (DRA) value function. These are axiomatically
characterized by a result very similar to Theorem 2, except that the axioms Pareto, Con-
tinuity, and Separability are applied to orderings defined on RNÓ rather than RNÒ (for all
N P N), and Top-independence is replaced by the following axiom:

Bottom-independence. For all x,y P X9 with |x| “ |y| and all z P R with z ď mintminpxq,minpyqu,
we have x ľ y if and only if xZ z ľ y Z z.

(This is similar to Asheim and Zuber’s (2014) axiom Existence independence of the worst
off, except they do not require x and y to have the same population.) However, DRA
axiologies are less appealing than ARA axiologies. As observed in Proposition 3.2, ARA
axiologies can simultaneously Strict inequality aversion and No Repugnant Conclusion. But
DRA axiologies cannot. Indeed, for a DRA axiology to satisfy No Repugnant Conclusion,
it must be inequality-promoting, which is much less attractive. However, by combining
Top-independence and Bottom-independence, we obtain the following result.
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Corollary 3.4 Let ľ be an actualist axiology on X9. Then ľ satisfies the axioms of
Theorem 2 and also Bottom-independence if and only if it is rank-discounted generalized
utilitarian, as in formula (3E).

This is similar to the main result of Asheim and Zuber (2014), except that they do
not require Separability and Tradeoff consistency, but instead employ an axiom positing the
existence of egalitarian equivalents, and a slightly stronger form of Critical levels.

4 Existence Independence

Rank-additive axiologies violate an axiom which Blackorby et al. (2005,§5.6) call Existence
Independence. This axiom says that the the ethical evaluation of outcomes concerning some
collection K of individuals (say, those currently alive on planet Earth) should not depend
upon information about the lifetime utilities —or even the existence —of people outside
of K (say, people who died long ago, who will be born in the far future, or who live on
other planets). As Blackorby et al. (2005,§5.1.1) note, the ethical evaluation of presently
existing people should not depend on the utility of some long-dead historical figure, such
as Euclid. Likewise, suppose that a colony of humans on another planet has long ago lost
all contact with Earth; Blackorby et al. (2005) argue that it would be absurd if the ethical
evaluations of the colonists depended upon the utilities of the earthlings (or vice versa).11

The generalized utilitarian value function in formula (2D) satisfies Existence Indepen-
dence, as does any “critical level” variant of generalized utilitarianism (with a constant
critical level). But it is violated by average utilitarianism, number-dampened utilitar-
ianism, and any other value function where the critical level depends on the utilities of
already-existing people. Rank-additive axiologies violate Existence Independence in an even
more fundamental way: if K is the collection of individuals under consideration, then we
don’t even know how to assign ranks to the members of K until we know the lifetime
utilities of all the other people not in K. This is especially problematic for actualist RA
axiologies such as the rank-discounted utilitarianism of Asheim and Zuber (2014), because
these axiologies violate Independence of the wretched. The vast majority of people who have
existed in human history (say, over the last 250 000 years) had lives that were “wretched”
by modern standards. But we don’t know exactly how many such people existed, or just
how wretched their lives were. This creates problems for any axiology whose assessment
of present and future social outcomes is sensitive to such historical data.12

Possibilist RA axiologies satisfy Independence of the wretched, so we do not need to study
the paleolithic hunter-gatherers of the Pleistocene to evaluate future economic policies. But
they still violate Existence Independence, so they are vulnerable to the objections raised by
Blackorby et al. (2005). There are several possible ways of dealing with this issue:

11See section 4 of Thomas (2019) for further discussion of these arguments.
12This also raises the question of whether we should include proto-human species such as Homo nean-

derthalensis or Homo heidelbergensis in the scope of the axiology. This is a deep and fascinating philo-
sophical problem. But by the same token, it creates even more difficulties for axiologies which violate
Independence of the wretched.
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(A) Interpret social outcomes in X as specifying only the lifetime utilities of individuals
who will be affected by policy decisions; treat everyone else as ethically irrelevant.
(In particular, ignore anyone who is already dead.)

(B) Interpret social outcomes in X as specifying only the lifetime utilities of individuals
living in the present or the future. Ignore the past.

(C) Interpret social outcomes in X as specifying all individuals whose lifetime utilities
are already known or can be predicted (including some people in the past). Ignore
people about which nothing can be known.

(D) Interpret social outcomes in X as specifying only the lifetime utilities of individuals
living after a fixed date (e.g. January 1, 2018). Ignore everyone before this date.

(E) Treat the utilities of unobserved individuals as a source of policy uncertainty, and
deal with it the same way we deal with any other source of uncertainty: by positing
a probability distribution over the unknown variables and then maximizing expected
value with respect to this probability distribution.

The problem with (A) is that it is not entirely predictable who will be affected by our
decisions in the future. For example, suppose the lost colony world unexpectedly re-
establishes contact with Earth, after many centuries of isolation; at this moment, the
rankings of everyone on the colony and on Earth would need to be recalculated, possibly
leading to large changes in the evaluation of social policies. In particular, if x and y are two
social outcomes which concern only the colonists, and x1 and y1 are two social outcomes
which concern only earthlings, then we may end up with a perverse situation where x ą y
and x1 ą y1, but xZ x1 ă y Z y1.

Option (B) avoids this problem. But an obvious problem with both (A) and (B) is
time inconsistency: as time passes, people move from “the future” or “the present” into
“the past”, and are removed from the specification of the social outcome. This changes the
rankings of the remaining people, and hence, the evaluation of social outcomes. It would
seem strange if social outcome x was deemed preferable to outcome y before David Bowie
died, but a moment after he dies, we decide that y1 is actually better than x1 (where x1

and y1 are obtained by removing Bowie’s lifetime utility from x and y respectively.
Approach (C) avoids time inconsistency. But it can still respond perversely to the

arrival of new information. For example, a new and unanticipated archeological discovery
could change our estimate of the lifetime utilities of the citizens of a large ancient civiliza-
tion (say, the Achaemenid Empire), and thus, perturb our evaluation of social outcomes
in the present day. Again, this seems absurd.

Approach (D) avoids the problems of (A), (B), and (C), but it is motivated more by
pragmatism than by principle; certainly we must give up any pretentions of moral realism if
we allow our ethical evaluations to depend on an arbitrarily stipulated date on a calendar.
Furthermore, (D) is still vulnerable to unknown information about the future; since we
cannot really predict the lifetime utilities of far future people with any degree of precision,
how are we supposed to incorporate them into the social welfare evaluation?
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This leaves us with approach (E). Approach (E) does not try to exclude unknown or
unknowable lifetime utilities from the specification of the social outcome by some arbitrary
criterion. Instead, it “bites the bullet”, acknowledging that these unknowns exist, they are
ethically relevant, and they must be taken into account. To formalize approach (E), I will
assume the possibilist framework of Section 2. (The formalisation for actualist axiologies is
similar, and is left to the reader.)13 Let I “ J \K, where J is an infinite set representing
all potential unobserved individuals (living in the distant future, the forgotten past, or on
faraway planets), while K is another infinite set representing all observable individuals (e.g.
those presently alive on Earth). Let Y :“ ty P RJ ; only finitely many coordinates of y are
nonzerou and let Z :“ tz P RK; only finitely many coordinates of z are nonzerou. Then
X “ Y ˆZ. Let µ be a probability distribution over Y , representing our beliefs about the
lifetime utilities of all unobserved people. For any social outcome z P Z (representing the
lifetime utilities of observed people), define

ĂW pzq :“

ż

Y
W py Z zq dµrys. (4A)

This defines a new value function ĂW : ZÝÑR, and it is this value function that (E)
says we should maximize. How does this work from a practical point of view? Let z :“
pz`, z´q P R9Ó` ˆ R9Ò´ . For any n P N, we can define a probability distribution ρ`z,n on
rn . . .8q where ρ`z,npmq is the probability (according to µ) that the individual in K with
lifetime utility z`n actually has rank m amongst all individuals with positive utility, once
we take into account all the unobserved individuals in J . Likewise, for any n P N, we
define a probability distribution ρ´z,n on rn . . .8q, where ρ´z,npmq is the probability that the
individual in K with lifetime utility z´n actually has rank m amongst all individuals with
negative utilities. (Note that ρ˘z,n are only supported on rn . . .8q, because introducing
new individuals to the list can only increase the rank of any existing individual.) We then

define the functions rφ˘n : R˘ÝÑR˘ by

rφ˘n prq :“
8
ÿ

m“n

ρ˘z,npmqφ
˘
mprq, for all r P R˘. (4B)

The value function ĂW in formula (4A) is then simply the rank-additive value function

obtained by inserting trφ`n u
8
n“1 and trφ´n u

8
n“1 into formula (2B).

Of course, approach (E) faces the same question as any decision under uncertainty: how
can we construct the probability distribution µ? But this question already confronts any
social decision problem which concerns people living in the far future. One way to minimize
the dependency on µ is to minimize the amount of variation between the functions tφ`n u

8
n“1

and tφ´n u
8
n“1 —or more importantly, between their derivatives. If the derivatives tpφ`n q

1u8n“1

are all very similar to one another, then the derivatives tprφ`n q
1u8n“1 of the functions defined

in formula (4B) will also be very similar, independent of the precise choice of µ. (And

13For another rank-dependent approach to population ethics with uncertainty, see Asheim and Zuber
(2016).
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likewise for tpφ´n q
1u8n“1 and tprφ´n q

1u8n“1.) Proposition 2.2 tells us that the functions tφ`n u
8
n“1

must rapidly decay to zero in a neighbourhood of the neutral utility 0. Hence, in this
neighbourhood, we cannot expect them to be similar in this desired sense. But outside
of this neighbourhood, nothing prevents us from ensuring that their derivatives are as
similar as possible; see Example 2.7. If pφ`100q

1 and pφ`10000q
1 are almost the same, then it

doesn’t matter whether a certain individual is ranked 100th or 10000th —the marginal
social welfare contribution of her lifetime utility is almost the same in both cases, so she
will treated the same in any policy decision in both cases.

This consideration suggests avoiding the rank-weighted utilitarian value functions such
as (2E) and (3D), where inequality aversion is obtained by systematically increasing the
slopes of the functions tφ`n u

8
n“1 as nÑ8 (and systematically decreasing the slopes of the

functions tφ´n u
8
n“1 as nÑ8). Instead, it suggests that we use something like the generalized

utilitarian value function in formula (2D), where the functions tφ`n u
8
n“1 are all as similar

as possible, and inequality aversion is obtained by making them sufficiently concave.

5 Excess (in)egalitarianism

As explained in Example 3.3, an ascending rank-weighted generalized utilitarian (ARWGU)
axiology (3D) is proper if

ř8

n“1 an ă 8. If tanu
8
n“1 is decreasing, then such an axiology

satisfies both Inequality aversion and No Repugnant Conclusion —an attractive combination.
However, these axiologies have a problem. If there is a sufficiently large number of people
with “satisfactory” lives, then a proper ARWGU axiology will prioritize the needs of a small
population with slightly worse lives over the creation of an arbitrarily large population
with excellent lives. To see this, not that, for any ε ą 0, there is some Npεq P N such that
ř8

k“Npεq`1 ak ă ε. Suppose for simplicity that φ is the identity. (The same argument works

for any choice of φ). Consider a population x consisting of a large number N of people
with lifetime utility 100 (representing a “satisfactory” life) and a much smaller number M
of people with lifetime utility 99. For concreteness, say that M “ 50. Let B :“

řM
k“1 ak,

let ε :“ B{1 000 000, and suppose that N ą Npεq. Now consider the following options:

• y consists of N `M people, all having lifetime utility 100.

• z “ x Z u, where u is a “utopia” containing a trillion people, all having lifetime
utility 1 000 000.

It is easily seen that W pyq ą W pzq. Formally:

W pyq “ W pxq `
M
ÿ

n“1

ak “ W pxq `B

“ W pxq ` 1 000 000 ε ą W pxZ uq “ W pzq.

In other words, the ARWGU axiology represented by W considers it better to help 50
people slightly improve their lifetime utility from 99 to 100, rather than to create a utopia
with a trillion people leading excellent lives, each with a lifetime utility of 1 000 000.

23



 Electronic copy available at: https://ssrn.com/abstract=3231904 

For concreteness, let’s say N “ 10 billion, and that 100 represents the lifetime utility of
the average middle-class person in a Western European country in the early 21st century.
So x represents a world somewhat more populous than our own, but with poverty entirely
eliminated worldwide. Perhaps it is Earth two hundred years in the future. Now suppose
that astronomers discover that this world faces an apocalyptic threat —say, it is about to
be struck by a huge asteroid, and the resulting explosion will destroy all life on the planet.
However, for a relatively small investment of resources, it would be possible to evacuate
some fraction of humanity to a self-sufficient lunar colony. (This is a future where the
technological problems of space travel and lunar settlement have been solved.) Let us
suppose that this lunar colony will not only survive, but flourish, and give rise to a vast
and long-lived interstellar civilization (represented by u) which, over the coming millenia
will be home to a trillion inhabitants who all live very long, happy, and fulfilling lives.
For the sake of the thought experiment, suppose (implausibly) that this happy outcome is
guaranteed in advance, and is known to the inhabitants of Earth. This is outcome z.

Alternately, instead of saving human civilization, we could use these same resources
to slightly improve the well-being of a small but unfortunate minority, who have slightly
sub-average lifetime utility (i.e. 99 instead of 100). Perhaps they need minor cosmetic
surgery. This is outcome y. Most people’s moral intuitions say that z is better than y.
But according the ARWGU value function W says y is better than z.

Here is another counterintuitive consequence. For any N P N, let xN describe a world
containing N million people, where the vast majority (say, 99.9999%) have excellent lives
(say, a lifetime utility of 10 000) but a tiny minority (0.00001%) have lives so terrible that
they are not even worth living (say, a lifetime utility of ´1). Any “utopia” which one
can imagine will have welfare distribution something like this: no matter how perfect the
utopia, there will inevitably be some tiny fraction of people who, through simple bad luck,
end up with miserable lives —perhaps they suffer from some extremely rare disease, or
perhaps they are victims of some incredibly improbable but terrible accident.

One would think that such a utopia is so wonderful that we should make N as large as
possible. But according to the axiology W , the larger we make N , the worse xN becomes.
Indeed, if N is large enough, then total social welfare is negative, meaning that a vast
galactic utopia with the above statistical welfare distribution of well-being is ethically
worse than a totally lifeless galaxy. For a less stark comparison, let y be a “small, safe,
but boring” world, containing only one million people, all of whom have lives which are
wretched, but technically worth living (say, a lifetime utility of 1). It is easily verified that,
if N is large enough, then W pxNq ă W pyq. Suppose humanity had to choose between
two futures: one leading to a galactic utopia (xN , for large N), and the other leading to a
wretched but anodyne future (y). The axiology W says that humanity should choose y.

Excess egalitarianism in particular affects the rank-discounted utilitarian axiology (3E)
characterized by Asheim and Zuber (2014). However, if proper ARWGU axiologies suffer
from excess egalitarianism, then possibilist RA axiologies can suffer from an even worse
problem: excess inegalitarianism. To see this, recall from Proposition 2.2(a) that a possi-
bilist RA axiology with value function W as in (2B) satisfies No Repugnant Conclusion if
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and only if there exists r0 ą 0 such that
8
ÿ

n“1

φ`n pr0q ă 8. Thus, for any ε ą 0, there is

some Npεq such that
8
ÿ

n“N`1

φ`n pr0q ă ε.

For concreteness, suppose that r0 “ 1, while a lifetime utility level 100 represents,
say, a middle-class life in a Western European country. Let ε :“ 0.0001 ˆ pφ`1 q

1p100q;
this is roughly the increase in total value that would be obtained if the best-off person
in society increased her lifetime utility from 100 to 100.0001. Let N :“ Npεq, and let
M :“ 1 000 000 000N . Let x be a social outcome containing N “well-off” people with
lifetime utility 100, and M “miserable” people with a lifetime utility of 0.1 (that is, lives
of abject misery, barely worth living). Consider the following possible improvements:

• In y, the best-off person’s lifetime utility is increased from 100 to 100.0002, while the
lifetime utility of everyone else stays exactly the same as in x.

• In z, the N well-off people remain the same, while the lifetime utilities of the M
miserable people are increased from 0.1 to 1.

It is easily verified that W pyq ą W pzq; in other words, the axiology considers it better to
increase the utility of the most fortunate individual by a minuscule amount, rather than
significantly boost the utilities of an astronomically vast population of miserable people.

Conclusion

Excess egalitarianism and excess inegalitarianism are very unappealing problems, which
plague any rank-additive axiology (either actualist or possibilist) that avoids the Repugnant
Conclusion via Propositions 2.2(a) and 3.2(a). In light of this, Theorems 1 and 2 might
not seem like positive results, but rather, impossibility theorems. Rank additive axiologies
also have other shortcomings: actualist axiologies violate Positive and Negative Expansion,
while possibilist axiologies violate Inequality aversion. As always in population ethics, there
are tradeoffs to be made. What is the best way to make them? This is an interesting
problem for future research.

A Appendix: Proofs of all results

Proof of Theorem 1. The proof of “ðù” is straightforward, so I will focus on the proof of
“ùñ”. First I will show that each of the orders ľN admits an additive representation

on RNÓ
` ˆ RNÒ

´ . Then I will combine all these representations together to obtain an
rank-additive value function on R9Ó` ˆ R9Ò´ . To achieve the first of these steps, I will
combine the classic representation theorem of Debreu (1960) with a well-known result of
Chateauneuf and Wakker (1993) (see Claim 6 below). But the deployment of this result
requires some technical preliminaries; this is the role of Claims 1 to 5.
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For any N P N, let RNÓÓ
`` :“ tx P RN ; x1 ą x2 ą ¨ ¨ ¨ ą xN ą 0u and RNÒÒ

´´ :“ tx P RN ;

x1 ă x2 ă ¨ ¨ ¨ ă xN ă 0u. Clearly, RNÓÓ
`` is the topological interior of RNÓ

` as a subset of

RN , while RNÒÒ
´´ is the topological interior of RNÒ

´ . Thus, RNÓÓ
`` ˆ RNÒÒ

´´ is the interior of

RNÓ
` ˆ RNÒ

´ in R2N .

Claim 1: Let N P N. Every indifference set of ľN in RNÓÓ
`` ˆ RNÒÒ

´´ is connected.

Before proving Claim 1, we must develop some machinery. For any N P N and any
r “ pr1, . . . , rNq P RN , let }r} :“

a

r21 ` ¨ ¨ ¨ ` r
2
N be its Euclidean norm. For any

x “ px`,x´q in RNÓÓ
`` ˆ RNÒÒ

´´ , define

x|x|y :“

d

}x`}2 `
1

}x´}2
.

(This is always well-defined because }x´} ‰ 0 for all x P RNÒÒ
´´ ). As the notation suggests,

this will be like a sort of “pseudo-norm” on RNÓÓ
`` ˆRNÒÒ

´´ (even though it is not a norm).

For any r P R`` and x P RNÓÓ
`` ˆRNÒÒ

´´ , we define r ‹x :“ pr x`, 1
r
x´q. It is easily verified

that x|r ‹ x|y “ r x|x|y. Let SN :“ ts P RNÓÓ
`` ˆ RNÒÒ

´´ ; x|s|y “ 1u; this plays the role of the

“unit sphere” for this “norm”. For any x P RNÓÓ
`` ˆ RNÒÒ

´´ , if r :“ x|x|y, then 1
r
‹ x P SN .

Claim 2: Let N P N, and let x P RNÓÓ
`` ˆ RNÒÒ

´´ . Let Z :“ tz P RNÓÓ
`` ˆ RNÒÒ

´´ ; z «N xu
be the indifference set of x. For any s P SN , there is a unique r P R`` with r ‹ s P Z.
Let φpsq :“ r ‹ s; this defines a continuous surjection φ : SNÝÑZ.

Proof: Existence and uniqueness. Since RNÓ
` ˆRNÒ

´ is a connected, separable topological
space, and ľN satisfies Continuity, the theorem of Debreu (1954) yields a continuous

function w : RNÓ
` ˆR

NÒ
´ ÝÑR that represents ľN —i.e. for all pa`, a´q, pb`,b´q P RNÓ

` ˆ

RNÒ
´ , we have pa`, a´q ľ pb`,b´q if and only if wpa`, a´q ě wpb`,b´q. Furthermore,

w is increasing in every coordinate, because ľN satisfies Pareto.

Fix s P S. For any r P R``, let vprq :“ wpr ‹ sq. Then v : R``ÝÑR is clearly a
continuous function. Suppose r is large enough that every coordinate of rs` is larger
than the corresponding coordinate of x`, while every coordinate of 1

r
s´ is smaller in

magnitude than the corresponding coordinate of x´. Then r ‹ s ą x by Pareto, and
thus, vprq “ wpr ‹ sq ą wpxq.

On the other hand, suppose r is small enough that every coordinate of rs` is less
than the corresponding coordinate of x`, while every coordinate of 1

r
s´ is larger in

magnitude than the corresponding coordinate of x´. Then r ‹ s ă x by Pareto, and
thus, vprq “ wpr ‹ sq ă wpxq.

Since w is continuous, the Intermediate Value Theorem yields some r P R`` such
that vprq “ wpxq —in other words, wpr ‹ sq “ wpxq, and hence r ‹ s «N x. Thus,
r ‹ s P Z, as desired. This proves that such an r exists. The fact that it is unique
follows from the Pareto axiom. This argument works for all s P S.

Surjective. Given z P Z, let r :“ x|z|y and let s :“ 1
r
‹ z; then s P SN . But r ‹ s “ z.

Thus, r ‹ s P Z, so φpsq “ r ‹ s “ z.

26



 Electronic copy available at: https://ssrn.com/abstract=3231904 

Continuity. For any s P S and δ ą 0, let Bps, δq :“ tb P SN ; }b ´ s} ă δu. For any
ε ą 0, we will find a δ ą 0 such that }φpbq ´ φpsq} ă ε for all b P Bps, δq.

Suppose that φpsq “ r0 ‹ s for some r0 P R``. For any b “ pb`,b´q P SN , define

Rpbq :“ r0 ¨max

"

s`1
b`1
, . . . ,

s`N
b`N
,
b´1
s´1
, . . . ,

b´N
s´N

*

.

If r ą Rpbq, then r b`n ą r0 s
`
n and 1

r
b´n ą

1
r0
s´n for all n P r1 . . . N s; thus, r ‹ b “

pr b`, 1
r
b´q ą pr0 s`, 1

r0
s´q “ φpsq « z, so that r‹b R Z. (Here, the “ą” is by Pareto.)

Likewise, define

Rpbq :“ r0 ¨min

"

s`1
b`1
, . . . ,

s`N
b`N
,
b´1
s´1
, . . . ,

b´N
s´N

*

.

If r ă Rpbq, then r b`n ă r0 s
`
n and 1

r
b´n ă

1
r0
s´n for all n P r1 . . . N s; thus, r ‹ b “

pr b`, 1
r
b´q ă pr0 s`, 1

r0
s´q “ φpsq « z, so that r ‹ b R Z. (Again, the “ă” is by

Pareto.) Thus,

φpbq “ r ‹ b for some r P R`` with Rpbq ă r ă Rpbq. (A1)

Let δ :“ mint|s˘n |u
N
n“1. For δ P p0, δq, define

Rpδq :“ r0 ¨max

"

s`1
s`1 ´ δ

, . . . ,
s`N

s`N ´ δ
,
s´1 ´ δ

s´1
, . . . ,

s´N ´ δ

s´N

*

and Rpδq :“ r0 ¨min

"

s`1
s`1 ` δ

, . . . ,
s`N

s`N ` δ
,
s´1 ` δ

s´1
, . . . ,

s´N ` δ

s´N

*

.

(Note: δ ă δ, so s`n ´ δ ą 0 and s´n ` δ ă 0 for all n P r1 . . . N s.) Then

Rpδq ď Rpbq ď Rpbq ď Rpδq, for all b P Bps, δq. (A2)

Furthermore, note that

lim
δÑ0

Rpδq “ lim
δÑ0

Rpδq “ r0. (A3)

Let M :“ }s} ` 1. Then

}b˘} ă }b} ď }s} ` 1 “ M, for all b “ pb`,b´q in Bps, 1q. (A4)

Given any ε ą 0, let η ą 0 be small enough that
d

η2 `

ˆ

η

r0 pr0 ´ ηq

˙2

ă
ε

2M
. (A5)

By statement (A3), there exists some δ1 P p0, δq such that

|Rpδq ´ r0| ă η and |Rpδq ´ r0| ă η, for all δ ă δ1. (A6)
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Meanwhile, let

δ2 :“
ε

2
b

r20 `
1
r20

. (A7)

Finally, define δ :“ mint1, δ1, δ2u. Now, let b P Bps, δq, and suppose φpbq “ r ‹ b for
some r P R``. Then

}φpbq ´ φpsq} “ }r ‹ b´ r0 ‹ s} ď }r ‹ b´ r0 ‹ b} ` }r0 ‹ b´ r0 ‹ s}

“

d

|r ´ r0|2 }b`}
2
`

ˇ

ˇ

ˇ

ˇ

1

r
´

1

r0

ˇ

ˇ

ˇ

ˇ

2

}b´}2 `

d

r20 }b
` ´ s`}2 `

1

r20
}b´ ´ s´}2

ď
paq

M

d

|r ´ r0|2 `

ˇ

ˇ

ˇ

ˇ

1

r
´

1

r0

ˇ

ˇ

ˇ

ˇ

2

`

d

r20 δ
2 `

1

r20
δ2

ď
pbq

M

d

η2 `

ˆ

η

r0 pr0 ´ ηq

˙2

` δ

d

r20 `
1

r20

ď
pcq

M

d

η2 `

ˆ

η

r0 pr0 ´ ηq

˙2

` δ2

d

r20 `
1

r20
ď
pdq

ε

2
`
ε

2
“ ε,

as desired. Here, (a) is because }b` ´ s`} ă δ and }b´ ´ s´} ă δ because b P

Bps, δq, while }b˘} ď M , by inequality (A4), because δ ď 1. Next, (b) is because
r P pr0 ´ η, r0 ` ηq by statements (A1), (A2), and (A6), because b P Bps, δq and
δ ď δ1. Meanwhile, (c) is because δ ď δ2. Finally, (d) is by definitions (A5) and (A7).
3 Claim 2

Claim 3: For any N P N, SN is path-connected.

Proof: For any r P p0, 1q, let

SN` prq :“
!

x P RNÓÓ
`` ; }x} “ r

)

and SN´ prq :“
!

x P RNÒÒ
´´ ; }x} “ r

)

.

Then it is easily verified that

SN :“
ğ

rPp0,1q

ˆ

SN` prq ˆ SN´
ˆ

1
?

1´ r2

˙˙

. (A8)

Now let p “ pp`,p´q and r “ pr`, r´q be two elements of SN . Let p` :“ }p`} and
r` :“ }r`}, and let p´ :“ 1{

a

1´ p2` and r´ :“ 1{
a

1´ r2`. Then equation (A8)
implies that p P SN` pp`q ˆ SN´ pp´q and r P SN` pr`q ˆ SN´ pr´q. Now, define

q` :“
p`
r`

r` and q´ :“
p´
r´

r´.

Then q` P R9ÓÓ`` and q´ P R9ÒÒ´´ (because r` P R9ÓÓ`` and r´ P R9ÒÒ´´ ) and }q`} “ p`
and }q´} “ p´. Thus, if q :“ pq`,q´q then q P SN` pp`q ˆ SN´ pp´q; hence q P SN .
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Now SN` pp`q is path-connected, since it is the intersection of the convex cone R9ÓÓ``

with the radius-p` sphere around 0 in RN . Likewise, SN´ pp´q is path-connected. Thus,
the Cartesian product SN` pp`q ˆ SN´ pp´q is also path-connected. Thus, there is a
continuous function γ : r´1, 0sÝÑSN` pp`qˆSN´ pp´q such that γp´1q “ p and γp0q “ q.

Next, for all t P r0, 1s, let ρ`ptq :“ t r``p1´ tq p`, and define ρ´ptq :“ 1{
a

1´ ρ`ptq2.
Then ρ˘ : r0, 1sÝÑp0, 1q are continuous functions, with ρ`p0q “ p` and ρ´p0q “ p´,
while ρ`p1q “ r` and ρ´p1q “ r´. Define γ : r0, 1sÝÑSN by

γptq :“

ˆ

ρ`ptq

r`
r`,

ρ´ptq

r´
r´
˙

, for all t P r0, 1s.

Then γ is a continuous function, with γp0q “ q and γp1q “ r. Furthermore, γptq P SN
for all t P r0, 1s by equation (A8).

At this point, we have constructed a continuous function γ : r´1, 1sÝÑSN such
that γp´1q “ p and γp1q “ r. This works for any p, r P SN . Thus, SN is connected.
3 Claim 3

Proof of Claim 1. Let Z be an indifference set of ľN in RNÓÓ
`` ˆ RNÒÒ

´´ . Claim 2 says
that Z is the image of SN under a continuous function. Claims 3 says SN is path-
connected. The continuous image of a path-connected set is also connected. Thus, Z
is path-connected. 3 Claim 1

Claim 4: For every x P RNÓ
` ˆRNÒ

´ , there is some y P RNÓÓ
`` ˆRNÒÒ

´´ such that x «N y.

Proof: As explained at the start of the proof of Claim 2, there is a continuous function

w : RNÓ
` ˆ RNÒ

´ ÝÑR that is increasing in every coordinate and that represents ľN .

Suppose x “ px`,x´q. Let z` P RNÓÓ
`` be obtained by increasing all coordinates

of x` slightly, so that z`1 ą z`2 ą ¨ ¨ ¨ ą z`N ą 0. Thus, wpz`,x´q ą wpxq, by

Pareto. Let z´ P RNÒ
´ be obtained by decreasing all coordinates of x´ slightly, so

that z´1 ă z´2 ă ¨ ¨ ¨ ă z´N ă 0. Thus, wpx`, z´q ă wpxq, by Pareto. Now, for all
r P r0, 1s, let y`prq :“ r z` ` p1 ´ rqx` and let y´prq :“ r x´ ` p1 ´ rq z´, and
let yprq :“ py`prq,y´prqq. Thus, yp0q “ px`, z´q and yp1q “ pz`,x´q. It is easily

verified that y`prq P RNÓÓ
`` for all r P p0, 1s, and y´prq P RNÒÒ

´´ for all r P r0, 1q; thus,

yprq P RNÓÓ
`` ˆRNÒÒ

´´ for all r P p0, 1q. Now, wryp0qs “ wpx`, z´q ă wpxq ă wpz`,x´q “
wryp1qs, and the function r ÞÑ wryprqs is clearly continuous. Thus, the Intermediate
Value Theorem yields some r P p0, 1q such that wryprqs “ wpxq. In other words
yprq «N x. Now set y :“ yprq to prove the claim. 3 Claim 4

Let x “ px`,x´q P RNÓ
` ˆRNÒ

´ . For all n P r1 . . . N s, say that the coordinate x`n is interior

if there is some y P RNÓÓ
`` ˆ RNÒÒ

´´ such that x`n “ y`n . (Recall that RNÓÓ
`` ˆ RNÒÒ

´´ is the

interior of RNÓ
` ˆRNÒ

´ in R2N .) We likewise define the interior property for the coordinates
x´1 , . . . x

´
N . In the terminology of Chateauneuf and Wakker (1993), x is interior-matched if
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x «N y for some y P RNÓÓ
`` ˆR

NÒÒ
´´ and at most one of the coordinates x`1 , . . . x

`
N , x

´
1 , . . . x

´
N

is not interior.14 (Observe that the first half of this condition is automatically satisfied, by
Claim 4.) Next, x is second-order interior-matched if x «N y for some interior or interior-

matched y P RNÓ
` ˆ RNÒ

´ , and at most one of the coordinates x`1 , . . . x
`
N , x

´
1 , . . . x

´
N does

not occur in an interior or interior-matched element. Likewise, x is third-order interior-
matched if x «N y for some interior, interior-matched, or second-order interior-matched

y P RNÓ
` ˆ RNÒ

´ , and at most one of the coordinates x`1 , . . . x
`
N , x

´
1 , . . . x

´
N does not occur

in an interior, interior-matched element, or second-order interior-matched element. We
likewise define nth-order interior-matched for all n P r1 . . . N ` 1s. Finally, x is matched
if it is interior or is nth-order interior-matched for some n P r1 . . . N ` 1s.

Claim 5: Every element of RNÓ
` ˆ RNÒ

´ is matched.

Proof: x “ px`,x´q P RNÓ
` ˆ RNÒ

´ . Claim 4 guarantees that x «N y for some y P

RNÓÓ
`` ˆ RNÒÒ

´´ . It remains to check the matching condition on the coordinates.

For all n P r1 . . . N s, it is easily verified that x`n is interior if and only if x`n ą 0.
Likewise, x´n is interior if and only if x´n ă 0. Thus, x is interior-matched if and only
if at most one of the coordinates x`1 , . . . x

`
N , x

´
1 , . . . x

´
N is zero. It is easily seen that

this occurs if and only if x`N´1 ą 0 and x´N´1 ă 0, and at least one of x`N and x´N is
nonzero.

Now suppose that both x`N “ 0 and x´N “ 0. Then each of these two coordinates can
be matched to an interior-matched point (by the previous paragraph). Thus, in this
case, x is second-order interior-matched if and only if all the coordinates x˘1 , . . . , x

˘
N´2

are nonzero, and at least one of the coordinates x`N´1 and x´N´1 is nonzero.

If both x`N´1 “ 0 and x´N´1 “ 0 (and hence, x`N “ 0 and x´N “ 0), then each of
the two coordinates x`N´1 and x´N´1 can individually be matched to some second-order
interior-matched point (by the previous paragraph), while each of the two coordinates
x`N and x´N can individually be matched to some interior-matched point. Thus, in this
case, x is third-order interior-matched if and only if all the coordinates x˘1 , . . . , x

˘
N´3

are nonzero, and at least one of the coordinates x`N´2 and x´N´2 is nonzero.

Proceeding inductively, we see that, for all n P r1 . . . N s, x is nth order interior-
matched if and only if all the coordinates x˘1 , . . . , x

˘
N´n are nonzero, and at most one

of the coordinates x`N´n`1 and x´N´n`1 is zero. In particular, x is Nth-order interior-
matched if and only if at least one of x`1 and x´1 is nonzero —in other words, as
long as x itself is not the zero vector. Thus, the zero vector itself is pN ` 1qth-order

interior-matched. Hence, every element of RNÓ
` ˆ RNÒ

´ is either interior, or nth order
interior-matched for some n P r1 . . . N ` 1s, and thus, matched. 3 Claim 5

Claim 6: For all N P N, there exists a unique system of continuous, increasing
functions ψ`1 , . . . , ψ

`
N : R`ÝÑR and ψ´1 , . . . , ψ

´
N : R´ÝÑR with ψ`1 p1q “ 1 and ψ˘n p0q “

14Actually our definition is slightly stronger than that of Chateauneuf and Wakker (1993). But it is
sufficient for our purposes.
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0 for all n P r1 . . . N s, such that, for any x “ px`,x´q and y “ py`,y´q in RNÓ
` ˆ RNÒ

´ ,
we have

´

x ľN y
¯

ðñ

˜

N
ÿ

n“1

ψ`n px
`
n q `

N
ÿ

n“1

ψ´n px
´
n q ě

N
ÿ

n“1

ψ`n py
`
n q `

N
ÿ

n“1

ψ´n py
´
n q

¸

. (A9)

Proof: An open box in R2N is an open set of the form pa1, z1qˆpa2, z2qˆ¨ ¨ ¨ˆpa2N , z2Nq Ă

R2N , for some a1 ă z1, a2 ă z2, . . ., a2N ă z2N . Let B Ă RNÓÓ
`` ˆ RNÒÒ

´´ be an open
box, and let ľB be the restriction of ľN to an ordering on B. In the terminology of
Debreu (1960), ľB is continuous, separable, and increasing in every coordinate, by the
axioms Continuity, Separability, and Pareto, respectively. Thus, Theorem 3 of Debreu
(1960) says that ľB admits an additive representation —that is, there are continuous,
increasing functions ψB

n : pan, znqÝÑR for all n P r1 . . . 2N s such that, for any b, c P B,
we have

´

b ľB c
¯

ðñ

˜

2N
ÿ

n“1

ψB
n pbnq ě

2N
ÿ

n“1

ψB
n pcnq

¸

. (A10)

RNÓÓ
`` ˆ RNÒÒ

´´ is open, so it can be covered by such open boxes. Thus, in the termi-
nology of Chateauneuf and Wakker (1993), the ordering ľN admits “local” additive

representations everywhere on RNÓÓ
`` ˆ RNÒÒ

´´ . Since RNÓÓ
`` ˆ RNÒÒ

´´ is a convex set, it
clearly satisfies conditions (1) and (2) in Structural Assumption 2.1 of Chateauneuf
and Wakker (1993). Meanwhile, condition (3) of Chateauneuf and Wakker (1993) is

true by Claim 1. Finally, Claim 5 says that every element of RNÓ
` ˆRNÒ

´ is “matched”.
Thus, by Theorem 3.3(a) of Chateauneuf and Wakker (1993), the local additive repre-
sentations (A10) can be combined together to yield a single global additive represen-

tation of ľN on all of RNÓ
` ˆRNÒ

´ . That is, there exist continuous, increasing functions
ψ`1 , . . . , ψ

`
N : R`ÝÑR and ψ´1 , . . . , ψ

´
N : R´ÝÑR giving the additive representation

(A9). Furthermore, the functions ψ`1 , . . . , ψ
`
N , ψ

´
1 , . . . , ψ

´
N are unique up to increasing

affine transformation with a common scalar multiplication.

For all n P r1 . . . N s, let k˘n :“ ψ˘n p0q. By replacing ψ˘n with the function ψ˘n ´ k
˘
0 if

necessary, we can assume without loss of generality that ψ˘n p0q “ 0 for all n P r1 . . . N s.
Now let s :“ ψ`1 p1q. By replacing ψ˘n with the function ψ˘n {s for all n P r1 . . . N s if
necessary, we can assume without loss of generality that ψ`1 p1q “ 1. 3 Claim 6

For all N P N, Claim 6 yields a collection of of functions ψ`N,1, . . . , ψ
`
N,N : R`ÝÑR`

and ψ´N,1, . . . , ψ
´
N,N : R´ÝÑR´ providing an additive representation (A9) for ľN on

RNÓ
` ˆRNÒ

´ , and furthermore such that ψ`N,1p1q “ 1 and ψ˘N,np0q “ 0 for all n P r1 . . . N s.

Now, if N ă M , then RNÓ
` can be embedded into RMÓ

` in a natural way, by sending
px1, x2, . . . , xNq to px1, x2, . . . , xN , 0, 0, . . . , 0q (where there are M ´N zeros). Likewise,

RNÒ
´ embeds into RMÒ

´ in a natural way. Thus, we obtain a natural embedding of RNÓ
` ˆR

NÒ
´

into RMÓ
` ˆRMÒ

´ . Under this embedding, the ordering ľN is the restriction of the ordering
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ľM to RNÓ
` ˆRNÒ

´ (because both arise as restrictions of the order ľ˚ to their respective
domains). Thus, the functions ψ`M,1, . . . , ψ

`
M,N , ψ

´
M,1, . . . , ψ

´
M,N yield a second additive

representation of ľN . But the additive representations in Claim 6 are unique. Thus, we
obtian ψ˘M,n “ ψ˘N,n for all n P r1 . . . N s. It follows that there is in fact a single infinite
sequence of functions pφ`n q

8
n“1 such that

ψ`N,n “ φ`n , for all N P N and all n P r1 . . . N s. (A11)

Likewise, there is a single infinite sequence of functions pφ´n q
8
n“1 such that

ψ´N,n “ φ´n , for all N P N and all n P r1 . . . N s. (A12)

It remains to show that the functions tφ`n u
8
n“1 and tφ´n u

8
n“1 yield the additive represen-

tation (2B) for ľ˚. To see this, let x,y P R9Ó` ˆ R9Ò´ . From formula (2G), there exist

L,M P N such that x P RLÓ
` ˆ RLÒ

´ , and y P RMÓ
` ˆ RMÒ

´ . Let N :“ maxtL,Mu. Then

RLÓ
` ˆRLÒ

´ Ď RNÓ
` ˆRNÒ

´ and RMÓ
` ˆRMÒ

´ Ď RNÓ
` ˆRNÒ

´ . Thus, both x and y are elements

of RNÓ
` ˆ RNÒ

´ , and we have
´

x ľ˚ y
¯

ð
paq
ñ

´

x ľN y
¯

ð
pbq
ñ

˜

N
ÿ

n“1

ψ`N,npx
`
n q `

N
ÿ

n“1

ψ´N,npx
´
n q ě

N
ÿ

n“1

ψ`N,npy
`
n q `

N
ÿ

n“1

ψ´N,npy
´
n q

¸

ð
pcq
ñ

˜

N
ÿ

n“1

φ`n px
`
n q `

N
ÿ

n“1

φ´n px
´
n q ě

N
ÿ

n“1

φ`n py
`
n q `

N
ÿ

n“1

φ´n py
´
n q

¸

ð
pdq
ñ

˜

8
ÿ

n“1

φ`n px
`
n q `

8
ÿ

n“1

φ´n px
´
n q ě

8
ÿ

n“1

φ`n py
`
n q `

8
ÿ

n“1

φ´n py
´
n q

¸

,

as desired. Here, (a) is by the definition of ľN , (b) is by the additive representation

(A9), (c) is by equations (A11) and (A12), and (d) is because x,y P RNÓ
` ˆRNÒ

´ , so that
x`n “ 0 and y`n “ 0 for all n P rN ` 1 . . .8q. l

Remark. The proof of Claim 6 uses a very similar strategy to Ebert’s (1988) proof of
his Theorem 1. But Ebert’s proof contains an error, identified by Wakker (1993, §2.3).
Fortunately, the result claimed by Ebert is actually correct (Wakker, 1993, Corollary 3.6);
indeed I will use this result in the proof of Theorem 2 below. But his result only applies

to the open cone of strictly positive nonincreasing vectors RNÓ
``, whereas we need the cor-

responding result for the closed cone RNÓ
` of nonnegative nonincreasing vectors. As shown

by Wakker (1993, Example 3.8), this extension does not come for free; hence the detailed
argument provided above in the proof of Claims 1-6 above. Despite Wakker’s (1993) ad-
monition, later authors have recapitulated Ebert’s error. For example, Balasubramanian
(2015, Corollary 3) repeats Ebert’s proof almost verbatim. Likewise, in the proof of their
Lemma 1, Asheim and Zuber (2014) cite Ebert’s (1988) Theorem 1 without correction.
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Proof of Proposition 2.1. (a) Let ľN be the restriction of the order ľ˚ to RNÓ
` , while

ľN`1 is the restriction of ľ˚ to RN`1Ó
` . Let x “ px1, . . . , xNq and y “ py1, . . . , yNq be

in RNÓ
` , let z ą maxpx1, y1q, and let x1 :“ pz, x1, . . . , xNq and y1 :“ pz, y1, . . . , yNq. Then

x1,y1 P RN`1Ó
` , and we have

´

x ľN y
¯

ð
p:q
ñ

´

x1 ľN`1 y1
¯

ð
p˚q
ñ

˜

φ`1 pzq `
N
ÿ

n“1

φ`n`1pxnq ě φ`1 pzq `
N
ÿ

n“1

φ`n`1pynq

¸

ðñ

˜

N
ÿ

n“1

φ`n`1pxnq ě
N
ÿ

n“1

φ`n`1pynq

¸

.

Here, p:q is by Top-independence in good worlds, while p˚q is by the representation (2B).

This equivalence holds for all x,y P RNÓ
` , and this argument can be repeated for any

N P N. Thus, if we define ψ`n :“ φ`n`1 for all n P N, then the functions tψ`n u
8
n“1 and

tφ´n u
8
n“1 yield another rank-additive representation like (2B) for ľ. But the functions

tφ˘n u
8
n“1 in this representation are unique up to multiplication by a common scalar. Thus,

there is some β ą 0 such that ψ`n “ β φ`n for all n P N —equivalently, φ`n`1 “ β φ`n for
all n P N. Let φ` :“ φ`1 {β; then we obtain φ`n :“ βn φ` for all n P N. The result follows.

The proof of (b) is almost identical, but works with tφ´n u
8
n“1 instead of tφ`n u

8
n“1. l

Proof of Proposition 2.2. First, note that the supremum W is never obtained by any
x P X , even if W is finite. To see this, suppose by contradiction that W pxq “ W for
some x P X . Let x1 be obtained by increasing x by some amount in every nonzero
coordinate. Then W px1q ą W pxq, because the functions φ˘n are all strictly increasing.
Thus, W px1q ą W , contradicting the definition of W .

(a) “ùñ” Let x and r0 be as in the formulation of No Repugnant Conclusion. For any N P N,
we have x ą r01N , and thus,

W pxq ą W pr01Nq “

N
ÿ

n“1

φ`n pr0q.

Taking the limit as NÑ8, we conclude that
8
ÿ

n“1

φ`n pr0q ď W pxq ă W , as desired.

“ðù” Let r0 satisfy the condition in the theorem. Then there exists some x P X such
that W pxq ą

ř8

n“1 φ
`
n pr0q, and thus, W pxq ą

řN
n“1 φ

`
n pr0q for all N P N. It follows that

x ą r01N for all N P N, as desired.
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(b) “ùñ” For any N P N, let x P X satisfy the statement of No utility monsters. Thus, for
all r P R`, we have x ą r 1N , and thus,

W pxq ą W pr 1Nq “

N
ÿ

n“1

φ`n prq.

Taking the limit as rÑ8, we obtain limrÑ8

řN
n“1 φ

`
n prq ď W pxq ă W , as desired.

“ðù” For any N P N, we have limrÑ8

řN
n“1 φ

`
n prq ă W . Thus, there exists some

x P X such that limrÑ8

řN
n“1 φ

`
n prq ă W pxq. Thus, for all r P R`, we have W pr 1Nq ă

W pxq, and thus, r 1N ă x, as desired.

For the last statement of the theorem, suppose that W ă 8. Let r0 ą 0, and let r1 ą r0;
then

ř8

n“1 φ
`
n pr1q ď W . Now let δ :“ φ`1 pr1q´φ

`
1 pr0q. Then δ ą 0 because φ`1 is strictly

increasing, and we have

8
ÿ

n“1

φ`n pr1q ě δ `
8
ÿ

n“1

φ`n pr0q ą

8
ÿ

n“1

φ`n pr0q.

It follows that
ř8

n“1 φ
`
n pr0q ă W . Thus, the condition in part (a) is satisfied. (In

fact this argument works for all r0 ą 0.) By a similar argument, we deduce that
limrÑ8

řN
n“1 φ

`
n prq ă W , for all N P N. Thus, part (b) is satisfied. l

Proof of Proposition 2.3. It is well-known that the Saint Petersburg Paradox can be
avoided by an expected-utility maximizer if and only if her utility function is bounded
above. In this case, the utility function is the value function W . This establishes the
first statement. The second follows immediately from Proposition 2.2. l

Proof of Proposition 2.4. Before proceeding with the proof of (a), (b), and (c), we need
some preliminary observations. Let ľ be an axiology on X . Let ľ˚ be the ordering on
R9Ó` ˆ R9Ò´ defined via statement (2A).

Claim 1: ľ satisfies Inequality neutrality (respectively, Inequality aversion, resp. Strict
inequality aversion) on X if and only if ľ˚ satisfies the same axiom on R9Ó` ˆ R9Ò´ .

Proof: Let x,y P X . Say that y is a rank-preserving Pigou-Dalton transform of x if y
is a Pigou-Dalton transform of x, and furthermore, for all i, j P I, if xi ă xj, then
yi ď yj; also, if xi ă 0, then yi ď 0; finally if xi ą 0, then yi ě 0. In other words, the
reallocation of utility does not change the ranking of people from best-off to worst-off
which we use to apply the rank-additive value function (2B). Note that we allow the
possibility that xi ă xj but yi “ yj —the reallocation may equalize two people (so that
afterwards they could be ranked in either order). Likewise, we allow the possibility
that xi ă 0 (or xi ą 0) but yi “ 0. The following facts are easily verified:
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(a) For any x, z P X , z is an ordinary Pigou-Dalton transform of x if and only if
there is a sequence x “ y0,y1,y2, . . . ,yN “ z such that for all n P r1 . . . N s, yn is
a rank-preserving Pigou-Dalton transform of yn´1.

(b) For any x,y P X , if y is a rank-preserving Pigou-Dalton transform of x, then
py`,y´q is an ordinary Pigou-Dalton transform of px`,x´q.

Fact (a) means that ľ satisfies Inequality neutrality (resp. Inequality aversion, resp.
Strict inequality aversion) with respect to rank-preserving Pigou-Dalton transforms if
and only if it satisfies this axiom with respect to all Pigou-Dalton transforms. Fact
(b) means that ľ satisfies one of these three axioms with respect to rank-preserving
Pigou-Dalton transforms if and only if ľ˚ satisfies the corresponding axiom (in its
ordinary form) on R9Ó` ˆ R9Ò´ . This proves the claim. 3 Claim 1

Now let x “ px`,y´q and y “ py`,y´q be elements of R9Ó` ˆ R9Ò´ , and suppose y is a
Pigou-Dalton transform of x. Then there exist m,n P N and ε ą 0 such that one of the
following three cases occurs:

(i) y´m “ x´m ` ε ď 0 ď y`n “ x`n ´ ε, while y´` “ x´` for all ` P Nztmu, and y`` “ x`` for
all ` P Nztnu.

(ii) m ą n, and y`m “ x`m ` ε ď y`n “ x`n ´ ε, while y`` “ x`` for all ` P Nztm,nu, and
y´` “ x´` for all ` P N.

(iii) m ă n, and y´m “ x´m ` ε ď y´n “ x´n ´ ε, while y´` “ x´` for all ` P Nztm,nu, and
y`` “ x`` for all ` P N.

Let W be the value function in formula (2B). The W pyq ´ W pxq takes the following
form in Cases (i), (ii), and (iii):

pIq W pyq ´W pxq “
“

φ´mpx
´
m ` εq ´ φ

´
mpx

´
mq
‰

´
“

φ`n px
`
n q ´ φ

`
n px

`
n ´ εq

‰

.

pIIq W pyq ´W pxq “
“

φ`mpx
`
m ` εq ´ φ

`
mpx

`
mq
‰

´
“

φ`n px
`
n q ´ φ

`
n px

`
n ´ εq

‰

.

pIIIq W pyq ´W pxq “
“

φ´mpx
´
m ` εq ´ φ

´
mpx

´
mq
‰

´
“

φ´n px
´
n q ´ φ

´
n px

´
n ´ εq

‰

.

With these preliminaries established, we proceed with the proof of parts (a), (b), and (c)
of the theorem. In each of (a), (b), and (c), it is easily verified that the stated conditions
are sufficient for ľ˚ to satisfy the stated axiom —and hence, for ľ to satisfy it, by Claim
1. It remains to prove that they are also necessary.

(a) Suppose ľ (and hence, ľ˚) satisfies Inequality neutrality. So if y is a Pigou-Dalton
transform of x, then W pyq “ W pxq. Thus, for any m,n P N, any ε ą 0, and any
x´m ă ´ε and x`n ą ε, the right-hand side of equation (I) above is zero. Thus, there is
some constant C ą 0 such that φ´mpx

´
m` εq´φ

´
mpx

´
mq “ C and φ`n px

`
n q´φ

`
n px

`
n ´ εq “ C

for all x´m ă ´ε and x`n ą ε. Thus, φ`n and φ´m must each have a constant slope —in
fact, the same slope. Since φ`n p0q “ 0 and φ´mp0q “ 0 by assumption, this means they
are linear functions with the same slope. Varying this argument over all m,n P N, we
conclude that the tφ`n u

8
n“1 and tφ´n u

8
n“1 are all linear functions with the same slope.
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Thus, value function (2B) is equivalent (up to multiplication by a scalar) to the classical
utilitarian value function (2C).

(b) Suppose ľ (and hence, ľ˚) satisfies Inequality aversion. So if y is a Pigou-Dalton
transform of x, then W pyq ě W pxq. Thus, for any m,n P N, any ε ą 0, and any
x˘n , x

˘
m P R, we have:

• If x´m ă ´ε and x`n ą ε, then the right-hand side of equation (I) is nonnegative.

• If x`n ´ 2ε ě x`m ě 0, then the right-hand side of equation (II) is nonnegative.

• If 0 ě x´n ě x´m ` 2ε, then the right-hand side of equation (III) is nonnegative.

Setting s :“ x˘m` ε and r :“ x˘n ´ ε in all three cases, we obtain the inequalities (i), (ii),
and (iii) in part (b) of the theorem.

To obtain inequality (2H), let J P N, and let ε :“ q{J . Then for any n ă m P N,

φ`n pqq “ φ`n pqq ´ φ
`
n p0q “

J´1
ÿ

j“0

´

φ`n ppj ` 1qεq ´ φ`n pjεq
¯

“

´

φ`n pεq ´ φ
`
n p0q

¯

`

J
ÿ

j“1

´

φ`n ppj ` 1qεq ´ φ`n pjεq
¯

´

´

φ`n ppJ ` 1qεq ´ φ`n pJεq
¯

ď
p˚q

´

φ`n pεq ´ φ
`
n p0q

¯

`

J
ÿ

j“1

´

φ`m pjεq ´ φ
`
m ppj ´ 1qεq

¯

´

´

φ`n pq ` εq ´ φ
`
n pqq

¯

“ φ`n

´ q

J

¯

` φ`mpqq ´
´

φ`n

´

q `
q

J

¯

´ φ`n pqq
¯

.

Here, p˚q is by inequality (b)(ii), where for each summand, we set r “ s “ jε, so that
r ` ε “ pj ` 1qε and s ´ ε “ pj ´ 1qε. We have also used several times the fact that
φ`n p0q “ φ`mp0q “ 0. Taking the limit as JÑ8, we obtain:

φ`n pqq ď φ`mpqq ` lim
JÑ8

φ`n

´ q

J

¯

´ lim
JÑ8

´

φ`n

´

q `
q

J

¯

´ φ`n pqq
¯

“ φ`mpqq,

where the last step is because φ`n is continous at 0 and at q. Thus, we deduce that
φ`n pqq ď φ`mpqq for all q P R` and n ă m P N. This justifies all the inequalities on the
left side of (2H). By an almost identical argument (using inequality (b)(iii)), we deduce
that φ´n pqq ď φ´mpqq for all q P R` and n ą m P N; this justifies all the inequalities
on the right side of (2H). Finally, by a similar argument (using inequality (b)(i)), we
deduce that φ`n pqq ď φ´mpqq for all q P R` and all n,m P N. This justifies the inequalities
between the left and right sides of (2H).

To prove inequality (2I), observe that inequalities (b)(i) -(b)(iii) imply the following

(i) If r ě 0 ě s, then
φ`n pr ` εq ´ φ

`
n prq

ε
ď
φ´mpsq ´ φ

´
mps´ εq

ε
.

(ii) If n ă m and r ě s ě ε ą 0, then
φ`n pr ` εq ´ φ

`
n prq

ε
ď
φ`mpsq ´ φ

`
mps´ εq

ε
.
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(iii) If n ą m and s ď r ď ´ε ă 0, then
φ´n pr ` εq ´ φ

´
n prq

ε
ď
φ´mpsq ´ φ

´
mps´ εq

ε
.

Taking the limit as εÑ0 in all three cases, we deduce:

(i1) If r ě 0 ě s, then pφ`n q
1prq ď pφ´mq

1psq.

(ii1) If n ă m and r ě s ą 0, then pφ`n q
1prq ď pφ`mq

1psq.

(iii1) If n ą m and s ď r ă 0, then pφ´n q
1prq ď pφ´mq

1psq.

If r1 ě r2 ě r3 ě ¨ ¨ ¨ ě 0 and s1 ď s2 ď s3 ď ¨ ¨ ¨ ď 0, then each of the inequalities in
between adjacent terms in (2I) can be obtained by invoking one of the inequalities (i1),
(ii1), or (iii1) above.

(c) The proof is identical to (b), but with strict inequalities. l

Proof of Proposition 2.6. Easy modification of the proof of Proposition 2.4. l

Proof of Theorem 2. The proof of “ðù” is straightforward, so I will focus on the proof of
“ùñ”. First I will show that each of the orders ľN admits an additive representation
on RNÒ ; then I will combine all these representations together to obtain an ARA value
function on R9Ò .
Claim 1: For any N P N, with N ě 3, there exists a unique collection of functions
ψN1 , . . . , ψ

N
N : RÝÑR with ψN1 p1q “ 1 and ψNn p0q “ 0 for all n P r1 . . . N s, such that for

any x,y P RNÒ , we have

´

x ľN y
¯

ðñ

˜

N
ÿ

n“1

ψNn pxnq ě
N
ÿ

n“1

ψNn pynq

¸

. (A13)

Proof: In the terminology of Wakker (1993), ľN is continuous, increasing, and satis-
fies coordinate independence, by the axioms Continuity, Pareto, and Separability re-
spectively. Thus, Corollary 3.6 of Wakker (1993) says there is an additive repre-
sentation of ľN on all of RNÒ . That is, there exist continuous, increasing functions
ψ1, . . . , ψN : RÝÑR yielding an additive representation (A13) for ľN . Furthermore,
the functions ψ1, . . . , ψN are unique up to increasing affine transformation with a
common scalar multiplication.

For all n P r1 . . . N s, let kn :“ ψnp0q. By replacing ψn with the function ψn ´ kn if
necessary, we can assume without loss of generality that ψnp0q “ 0 for all n P r1 . . . N s.
Now let s :“ ψ1p1q. By replacing ψn with the function ψn{s for all n P r1 . . . N s if
necessary, we can assume without loss of generality that ψ1p1q “ 1.

For every N P N, we can repeat the above construction. That is, for all N P N,
we obtain a collection of functions ψN1 , . . . , ψ

N
N : RÝÑR yielding an additive repre-

sentation (A13) for ľN , and furthermore such that ψN1 p1q “ 1 and ψNn p0q “ 0 for all
n P r1 . . . N s. 3 Claim 1
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It remains to show that these additive representations agree for different values of N .

Claim 2: There is single infinite sequence of functions pφnq
8
n“1 such that

ψNn “ φn, for all N P N and all n P r1 . . . N s. (A14)

Proof: Let N P N, let r P R, and let Yprq :“ tx P RNÒ ; xN ď ru. This is a convex subset
of RNÒ . For any x P Yprq, define x1 “ px1, . . . , xN , rq, an element of RN`1Ò . Then for
all x,y P Yprq, we have x ľN y if and only if x1 ľN`1 y1, by Top-independence. From
the additive representation (A13), this means that

˜

N
ÿ

n“1

ψNn pxnq ě
N
ÿ

n“1

ψNn pynq

¸

ðñ

˜

ψN`1N`1prq `
N
ÿ

n“1

ψN`1n pxnq ě ψN`1N`1prq `
N
ÿ

n“1

ψN`1n pynq

¸

ðñ

˜

N
ÿ

n“1

ψN`1n pxnq ě
N
ÿ

n“1

ψN`1n pynq

¸

.

Furthermore, by the normalization in Claim 1, we have ψN1 p1q “ ψN`11 p1q “ 1 and
ψNn p0q “ ψN`1n p0q “ 0 for all n P r1 . . . N s. By standard uniqueness results, we deduce
that ψNn pxq “ ψN`1n pxq for all x P p´8, rs and all n P r1 . . . N s. We can repeat this
argument for any r P R; we conclude that ψNn “ ψN`1n for all n P r1 . . . N s. 3 Claim 2

For any x P X9, we define Φpxq :“
řN
n“1 φnpx

Ò
nq, where N :“ |x|. For any x,y P X9

with |x| “ |y|, Claims 1 and 2 together imply that

´

x ľ y
¯

ðñ

´

Φpxq ě Φpyq
¯

. (A15)

It remains to show that statement (A15) also holds when |x| ‰ |y|.

For any M,N P N, let IM,N :“ tr P R; there exist x P XN and y P XM such that x « y
and Φpxq “ ru.

Claim 3: IM,N is an nonempty interval. Thus, for any r P R, if r R IM,N , then either
r ă s for all s P IM,N , or r ą s for all s P IM,N . In particular, for any y P XN ,

(a)
´

Φpyq ă s for all s P IM,N

¯

ðñ

´

y ă z for all z P XM
¯

.

(b)
´

Φpyq ą s for all s P IM,N

¯

ðñ

´

y ą z for all z P XM
¯

.

Proof: Nonempty. For any N P N, Neutral population growth yields some xN P XN such
that xN « H. Let s :“ ΦpxNq. Then s P IM,N , because xN « xM , and xM P XM .
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Interval. Let r, t P IM,N , with r ă t. We claim that rr, ts Ď IM,N . To see this,
let s P pr, tq. There exists some x, z P XN such that Φpxq “ r and Φpzq “ t,
and such that x « x1 and z « z1 for some x1, z1 P XM . Define ΦN : RNÒÝÑR by
setting ΦNpyq :“

řN
n“1 φnpynq for all y “ py1, . . . , yNq P RNÒ ; then ΦN is continuous

(because each of φ1, . . . , φN is continuous). Since ΦNpx
Òq “ r and ΦNpz

Òq “ t, and
RNÒ is connected, the Intermediate Value Theorem yields some v P RNÒ such that
ΦNpvq “ s. Let y P XN such that yÒ “ v; then Φpyq “ s. By statement (A15), we
have x ă y ă z, because r ă s ă t.

Let A :“ taÒ; a P XM and a ą yu and B :“ tbÒ; b P XM and b ă yu. By
the axiom Continuity, these are both open subsets of RMÒ . Clearly, they are disjoint.
Furthermore, both are nonempty, because px1qÒ P B and pz1qÒ P A. (Because x1 «
x ă y and z1 « z ą y.) Thus, there must be some py1qÒ P RMÒ such that y1 « y
—otherwise, RMÒ “ A \ B, which contradicts the fact that RMÒ is connected. Since
s “ Φpyq and y « y1, it follows that s P IM,N , as desired. This argument works for
any r, t P IM,N and s P rr, ts; it follows that IM,N is an interval.

(a) “ùñ” (by contradiction) Let y P XN , and suppose Φpyq ă s for all s P IM,N ,
but also suppose y ľ z1 for some z1 P XM . Now, IM,N is nonempty, so let s P IM,N ,
and let x P XN such that Φpxq “ s. We have Φpyq ă s “ Φpxq, and hence, y ă x by
statement (A15). Meanwhile, there is some x1 P XM such that x « x1, by definition of
IM,N . Thus, y ă x1. Meanwhile, y ľ z1. By repeating the argument in the previous
paragraph (using Continuity and the connectedness of RMÒ), we can construct some
y1 P XM such that y « y1. But then Φpyq P IM,N , which is a contradiction. To avoid
the contradiction, we must have y ă z.

“ðù” Suppose y ă z for all z P XM . Let s P IM,N . Then s “ Φpxq for some
x P XN , with some x1 P XM such that x « x1. But then y ă x1, hence y ă x, hence
Φpyq ă Φpxq “ s, by statement (A15), as desired.

The proof of (b) is very similar to the proof of (a). 3 Claim 3

For any r P IM,N , find x P XN such that Φpxq “ r. Then find y P XM with x « y, and
define VN,Mprq :“ Φpyq. Then VN,Mprq P IN,M .

Claim 4: VN,Mprq is well-defined independent of the particular choice of x and y.

Proof: Let x1 P XN and y1 P XM , and suppose that Φpx1q “ r and x1 « y1. Then
y1 « x1 « x « y (where the middle indifference is by (A15), because Φpx1q “ Φpxq)
hence y1 « y (by transitivity), and hence Φpy1q “ Φpyq (by (A15)). 3 Claim 4

This yields a function VM,N : IM,NÝÑIN,M . It is easily verified that VM,N is an increasing
bijection from IM,N to IN,M , and V ´1M,N “ VN,M , as a function from IN,M back to IM,N .

Claim 5: For any x P XN and y P XM , if Φpxq P IM,N , then
´

x ľ y
¯

ðñ

´

VM,N rΦpxqs ě Φpyq
¯

.
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Proof: Let r :“ Φpxq, and let r1 :“ VM,Nprq. Then there is some x1 P XM such that
x « x1 and Φpx1q “ r1. Let s :“ Φpyq. If s ď r1, then representation (A15) yields
y ĺ x1. Meanwhile, x1 « x; thus, y ĺ x, by transitivity. If s ě r1, then representation
(A15) yields y ľ x1. Meanwhile, x1 « x; thus, y ľ x, by transitivity. 3 Claim 5

Claim 6: For any n ă m P N and a ă c P R, there exists ε ą 0 and a continuous,
increasing function ψ : pa´ε, a`εqÝÑR with ψpaq “ c, such that for all b P pa´ε, a`εq,
if d :“ ψpbq, then pa

n
; bq « pc

m
; dq.

Proof: Let x P X9 such that xÒn´1 ă xÒn “ a ă xÒn`1 and xÒm´1 ă xÒm “ c ă xÒm`1. Let
N :“ |x|. Since φm is continuous and strictly increasing, its image Rm :“ φmpRq is
an open interval in R, and φm : RÝÑRm is a homeomorphism. Likewise, if Rn :“
φnpRq, then Rn is an open interval and φn : RÝÑRn is a homeomorphism. Let
R1m :“ tr´φmpcq`φnpaq; r P Rmu; then φnpaq P R1m (because φmpcq P Rm) and thus,
R1mXRn is itself a nonempty open interval containing φnpaq. LetQn :“ φ´1n pR1mXRnq;
then Qn is an open interval containing a. Now define ψ : QnÝÑR by setting

ψpqq :“ φ´1m

´

φnpqq ´ φnpaq ` φmpcq
¯

, for all q P Qn.

Then ψpaq “ c. If Qm :“ ψpQnq, then Qm is an open interval containing c, and ψ
is a continuous, increasing bijection from Qn to Qm. Let Q1n :“ Qn X pxÒn´1, x

Ò

n`1q X

ψ´1pxÒm´1, x
Ò

m`1q, and let Q1m :“ ψpQ1nq, then Q1n and Q1m are open intervals around a
and c respectively, and ψ : Q1nÝÑQ1m is a continuous increasing function.

For any b P Q1n, the element x
pa

n
;bq

is well-defined because xÒn´1 ă b ă xÒn`1. If

d :“ ψpbq, then x
pc

m
;dq

is well-defined because xÒm´1 ă d ă xÒm`1 because d P Q1m.

Finally, x
pa

n
;bq

« x
pc

m
;dq

by statement (A15), because Φpx
pa

n
;bq
q “ Φpx

pc
m
;dq
q, because

φmpdq ´ φmpcq “ φnpbq ´ φnpaq by the definition of ψ. Thus, pa
n
; bq « pc

m
; dq.

Now find ε ą 0 small enough that pa´ ε, a` εq Ď Q1n. Then for any b P pa´ ε, a` εq,
if d “ ψpbq, then pa

n
; bq « pc

m
; dq, by the previous paragraph. 3 Claim 6

Claim 7: For any M,N P N, there exists a constant QM,N P R such that VM,Nprq “
r `QM,N for all r P IM,N .

Proof: Let r P IM,N . Find x P XN with Φpxq “ r, and find y P XM such that x « y;
then VM,N rΦpxqs “ Φpyq, by the definition of VM,N and Claim 4. Find n,m P r1 . . . N s
such that xn´1 ă xn ă xn`1 and ym´1 ă ym ă ym`1. Let a :“ xn and c :“ ym. Let
ψ : pa´ ε, a` εqÝÑR be as described in Claim 6; then ψpaq “ c. Define

ε0 :“ min
!

ε, xn`1 ´ a, a´ xn´1, ψ
´1
pym`1q ´ a, a´ ψ

´1
pym´1q

)

.

Then ε0 ą 0. Let b P pa ´ ε0, a ` ε0q, and let d :“ ψpbq. If δ :“ φnpbq ´ φnpaq,
then also φmpdq ´ φmpcq “ δ, because pa

n
; bq « pc

m
; dq by the definition of ψ

in Claim 6. If x1 :“ x
pa

n
;bq

(which is well-defined because b P pxn´1, xn`1q), then
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Φpx1q “ Φpxq ` δ. Likewise, if y1 :“ y
pc

m
;dq

(which is well-defined because d “ ψpbq

and b P pψ´1pym´1q, ψ
´1pym`1qq), then Φpy1q “ Φpyq ` δ.

As x « y, therefore x1 « y1, by Tradeoff consistency. Thus, VM,N rΦpx
1qs “ Φpy1q,

by Claim 5. In other words, VM,N rΦpxq ` δs “ Φpyq ` δ “ VM,N rΦpxqs ` δ.

This equality holds for any sufficiently small δ —in particular, it holds for all δ in
the set tφnpbq ´ φnpaq; b P pa ´ ε0, a ` ε0qu, which is an open interval around zero.
Thus, if r P IM,N and s P IN,M are any values such that VM,Nprq “ s, then we also
have VM,Npr ` δq “ s ` δ for all sufficiently small δ. This shows that VM,N is an
affine function with slope 1 in a neighbourhood of each point in IM,N . But IM,N is an
interval by Claim 3; it follows that VM,N is an affine function with slope 1 everywhere
on IM,N . 3 Claim 7

Based on Claim 7, we can extend VM,N to an affine function VM,N : RÝÑR, by defining
VM,Nprq “ r `QM,N for all r P R.

Claim 8: For any x P XN and z P XM ,
´

x ĺ z
¯

ðñ

´

VM,N rΦpxqs ď Φpzq
¯

.

Proof: Let r :“ Φpxq and let t :“ Φpzq. If r P IM,N , then the stated equivalence follows
from Claim 5. Likewise, if t P IN,M , then it follows from Claim 5 and the observation
that V ´1N,M “ VM,N and both are increasing, so that VM,N rΦpxqs ď Φpzq if and only if
Φpxq ď VN,M rΦpzqs.

So, suppose that r R IM,N and t R IN,M . It follows that x ff z (because otherwise
we would have both r P IM,N and t P IN,M). Thus, either x ă z or x ą z.

Claim 8A: (a) If x ă z, then VM,N rΦpxqs ă Φpzq.

(b) If x ą z, then VM,N rΦpxqs ą Φpzq.

Proof: (a) Suppose x ă z. Claim 3 says IM,N is an interval. So, since r R IM,N , we
must have either r ă s for all s P IM,N , or r ą s for all s P IM,N . If r ą s for all
s P IM,N , then Claim 3(b) says that x ą y for all y P XM , which contradicts the
hypothesis that x ă z. So, we must have r ă s for all s P IM,N . By a similar logic
(using Claim 3(a)), we must have t ą s1 for all s1 P IN,M .

Now, let s P IM,N and find some y P XN such that Φpyq “ s, and some y1 P XM
such that y « y1. Thus, if s1 :“ Φpy1q, then s1 “ VM,Npsq. Furthermore, s1 P IN,M .
By the previous paragraph, we have r ă s and s1 ă t. Thus, VN,Mprq ă VN,Mpsq “
s1 ă t. In other words, VM,N rΦpxqs ă Φpzq.

The proof of (b) is similar. O Claim 8A

Claim 8B: VM,N rΦpxqs ‰ Φpzq.

Proof: (by contradiction) Suppose VM,N rΦpxqs “ Φpzq. By taking the contrapositive
parts (a) and (b) of Claim 8A, we cannot have either x ă z or x ą z. So we must
have x « z, because ľ is a complete relation. But we have already deduced that
x ff z , so this is a contradiction. O Claim 8B

It follows from Claim 8B that either VM,N rΦpxqs ă Φpzq or VM,N rΦpxqs ą Φpzq. If
VM,N rΦpxqs ă Φpzq, then the contrapositive of Claim 8A(b) says that x ĺ z, and
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hence x ă z (because x ff z). If VM,N rΦpxqs ą Φpzq, then the contrapositive of Claim
8A(a) says that x ľ z, and hence x ą z (because x ff z). At this point, we have
shown that x ă z if and only if VM,N rΦpxqs ă Φpzq. Likewise, x ą z, if and only
if VM,N rΦpxqs ą Φpzq. Since we also know that x ff z and VM,N rΦpxqs ‰ Φpzq (by
Claim 8B) this suffices to prove the claimed equivalence. 3 Claim 8

For all N,M P N, let QN,M be as in Claim 7.

Claim 9: For all M,N P N, we have QM,N “ ´QN,M , and for all L P N, we have
QL,M `QM,N “ QL,N .

Proof: As already noted, V ´1M,N “ VN,M , as a function from IN,M back to IM,N ; thus,
Claim 7 yields QM,N “ ´QN,M .

Now consider the set IM,N X VN,MpIL,Mq. I claim this intersection is nonempty.
To see this, for all ` P tL,M,Nu, let x` P X` be such that x` « H; such elements
exist by Neutral population growth. If r :“ ΦpxNq, then r P IM,N (because xN « xM).
Likewise, if s :“ ΦpxMq, then s P IL,M (because xM « xL). Finally, VN,Mpsq “ r,
because xM « xN . Thus, r P IM,N X VN,MpIL,Mq; thus, IM,N X VN,MpIL,Mq ‰ tu.

It is easily verified that IM,N X VN,MpIL,Mq Ď IL,N , and VL,M ˝ VM,Nprq “ VL,Nprq,
for all r P IM,N X VN,MpIL,Mq. Thus, Claim 7 yields QL,M `QM,N “ QL,N . 3 Claim 9

For all N P N, let qN :“ QN,N´1. (In particular q1 “ Q1,0 “ V1,0p0q “ V1,0rΦpHqs “
φ1px1q, where x1 P R is the unique value such that if x P X1 is the one-person outcome
with lifetime utility x1, then x « H; such an x1 exists by Neutral population growth, and
it is unique by Pareto.) For any N ăM , Claim 9 implies that QM,N “ qN`1` ¨ ¨ ¨ ` qM .
For all n P N, define φ1n :“ φn ´ qn. For any x P X9, if N :“ |x|, then define

Φ1pxq :“
N
ÿ

n“1

φ1npx
Ò
nq “

N
ÿ

n“1

φnpx
Ò
nq ´

N
ÿ

n“1

qn “ Φpxq ´QN,0. (A16)

Thus, for all M P N and y P XM ,

´

Φ1pxq ě Φ1pyq
¯

ð
paq
ñ

´

Φpxq ´QN,0 ě Φpyq ´QM,0

¯

ðñ

´

Φpxq `QM,0 ´QN,0 ě Φpyq
¯

ð
pbq
ñ

´

VM,N rΦpxqs ě Φpyq
¯

ð
pcq
ñ

´

x ľ y
¯

,

as desired. Here, (a) is by equation (A16). Next, (b) is because QM,0´QN,0 “ QM,N by
Claim 9, so that Φpxq ` QM,0 ´ QN,0 “ Φpxq ` QM,N “ VM,N rΦpxqs. Finally, (c) is by
Claim 8. l
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Remark. In the proof of Proof of Theorem 2, Neutral population growth is only needed
in Claims 3 and 9, where it is used to show that certain sets are not empty.

Proof of Proposition 3.1. “ùñ” (by contradiction) Let I :“ infpφ1pRqq. If the claim is
false, then either I ą ´Spφq, or I “ ´Spφq and supremum in formula (3F) is obtained.

Case 1. Suppose I ą ´Spφq. Then ´I ă Spφq. Thus, there exist x1 ď x2 ď ¨ ¨ ¨ ď
xN P R such that

řN
n“1 δφnpxnq ą ´I. Find x P X9 such that xÒ “ px1, . . . , xNq.

Suppose r ă x1, and let y :“ xZ r. Then yÒ “ pr, x1, . . . , xNq. Thus

W pyq “ φ1prq `
N
ÿ

n“1

φn`1pxnq, while W pxq “

N
ÿ

n“1

φnpxnq,

so that W pyq ´W pxq “ φ1prq `
N
ÿ

n“1

δφnpxnq ą φ1prq ´ I ě
p˚q

0,

where p˚q is by definition of I. Thus, W pyq ą W pxq, so x Z r ą x. This holds for all
r ă x1.

On the other hand, if s ě x1, then s ą r for any r ă x1, and thus x Z s ą x Z r by
Pareto, while x Z r ą x by the previous paragraph. Thus, x Z s ą x by transitivity. It
follows that xZ s ą x for all s P R. This contradicts the axiom Critical levels.

Case 2. Suppose I “ ´Spφq and supremum in formula (3F) is obtained. Then
´I “ Spφq, and there exists some x1 ď x2 ď ¨ ¨ ¨ ď xN P R such that

řN
n“1 δφnpxnq “ ´I.

Again, let x P X9 be such that xÒ “ px1, . . . , xNq, let r ă x1, and let y :“ x Z r. Then
by a similar computation to Case 1, we get

W pyq ´W pxq “ φ1prq `
N
ÿ

n“1

δφnpxnq “ φ1prq ´ I ą 0.

(Here, the last step is because φ1prq ą I because the infimum I is never obtained, since
φ1 is strictly increasing.) Thus, once again, W pyq ą W pxq, hence x Z r ą x. This
argument holds for all r ă x1. The rest of the argument is identical to Case 1; again we
obtain a contradiction of Critical levels.

“ðù” Suppose ľ has an ARA representation satisfying the condition the theorem. To
show that ľ satisfies Critical levels, let x P X9. For any r P R, define ψprq “ W pxZ rq.
It is easily verified that ψ : RÝÑR is a continuous function. To verify Critical levels, we
must find some c P R such that ψpcq “ W pxq.

Claim 1: There exists d P R such that ψpdq ą W pxq.

Proof: Let N :“ |x|, and let xÒ “ pxÒ1, . . . , x
Ò

Nq. By hypothesis, we have φN`1pcN`1q “ 0.
Thus, φN`1pdq ą 0 for any d ą cN`1. Suppose d ą maxtxÒN , cN`1u, and let d :“ xZd.
Then dÒ “ pxÒ1, . . . , x

Ò

N , dq. Thus, ψpdq “ W pdq “ W pxq ` φN`1pdq ą W pxq, because
φN`1pdq ą 0. 3 Claim 1
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Claim 2: There exists b P R with φ1pbq ă ´
N
ÿ

n“1

δφnpx
Ò
nq.

Proof: Let A :“
řN
n“1 δφnpx

Ò
nq. Then Spφq ě A, so ´Spφq ď ´A. By hypothesis,

infpφ1pRqq ď ´Spφq, and if infpφ1pRqq “ ´Spφq, then the supremum (3F) is not
obtained. If infpφ1pRqq ă ´Spφq, then there is some b P R such that φ1pbq ă ´Spφq,
and hence, φ1pbq ă ´A as desired. On the other hand, if infpφ1pRqq “ ´Spφq, then
the supremum (3F) is not obtained, so Spφq ą A. Thus, ´Spφq ă ´A, and hence
infpφ1pRqq ă ´A, so there is some b P R such that φ1pbq ă ´A, as desired. 3 Claim 2

Claim 3: There exists b P R with ψpbq ă W pxq.

Proof: Let b0 P R be as in Claim 2. Note that any b ă b0 also satisfies the inequality in
Claim 2. By making b small enough, we can assume that b ă xÒ1. Thus, if b “ xZ b,
then bÒ “ pb, xÒ1, . . . , x

Ò

Nq. Thus,

W pbq “ φ1pbq `
N
ÿ

n“1

φn`1px
Ò
nq, while W pxq “

N
ÿ

n“1

φnpx
Ò
nq,

so that W pbq ´W pxq “ φ1pbq `
N
ÿ

n“1

δφnpx
Ò
nq ă 0.

Thus, ψpbq “ W pbq ă W pxq. 3 Claim 3

From Claims 1 and 3, we have b, d P R such that ψpbq ă W pxq ă ψpdq. By the
Intermediate Value Theorem, there exists some c P pb, dq such that ψpcq “ W pxq. Thus,
W pxZ cq “ W pxq, which means xZ c « x, as desired. l

Proof of Proposition 3.2. The proof of (a) is similar to to the proof of Proposition 2.2(a).
The proof of parts (b) and (c) is similar to the proof of Proposition 2.4. l

Proof of Corollary 3.4. The strategy is very similar to the proof of Proposition 2.1. l
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