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Abstract

We focus on the single-peaked domain and study the class of Generalized Approval Mechanisms 
(GAMs): First, players simultaneously select subsets of the outcome space and scores are assigned to each 
alternative; and, then, a given quantile of the induced score distribution is implemented. Our main finding 
is that essentially for every Nash-implementable welfare optimum – including the Condorcet winner alter-
native – there exists a GAM that Nash-implements it. Importantly, the GAM that Nash-implements the 
Condorcet winner alternative is the first simple simultaneous game with this feature in the literature.
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1. Introduction

In the single-peaked domain, the Nash-implementable welfare optima, practically, coincide 
with the outcomes of Generalized Median Rules (GMRs).1 In simple terms, the outcome of a 
GMR is the median of a set of points that consists of: a) the voters’ ideal policies and b) some 
exogenous values also known as phantoms. As proved by Moulin (1980) GMRs are the unique 
social choice rules that satisfy efficiency and strategy-proofness, while Berga and Moreno (2009)
established that strategy-proof rules which are “not too bizarre” (in the context of Sprumont, 
1995)2 are the only implementable ones.

However, one should note that the direct revelation game of each GMR need not lead to the 
same outcome as the GMR itself. In this respect, the direct revelation games of GMRs share a 
common feature with other strategy-proof mechanisms: They admit a large multiplicity of Nash 
equilibria, some of which produce different outcomes (see Saijo et al., 2007). For instance, the 
direct revelation game triggered by the pure median rule – whose outcome is the Condorcet 
winner alternative – exhibits a large set of equilibria: As long as every player announces the 
same alternative x, this constitutes an equilibrium with outcome x since no unilateral deviation 
affects the median choice.3 This leads to the following conclusion: The direct revelation game of 
a GMR does not Nash-implement the GMR (see Repullo, 1985 for similar results).4

So how do we Nash-implement GMRs in a simple manner? Yamamura and Kawasaki (2013)
propose the class of averaging mechanisms. Each player announces an alternative and a mono-
tonic transformation of the average alternative is implemented. The equilibrium outcome coin-
cides with the outcome of a GMR with an important restriction: All phantoms must be interior, 
which prevents, among others, the implementation of the Condorcet winner alternative. More-
over, Gershkov et al. (2016) have recently shown that sequential quota mechanisms can also 
implement GMRs.5 Indeed, being able to implement GMRs by the means of simple sequen-
tial games is very important, but ideally one would like to be able to do the same using simple 
simultaneous games as well.

In this paper, we design the class of Generalized Approval Mechanisms (GAMs). These 
mechanisms are quite easy to describe and belong to the class of simultaneous voting games. 
First, players select subsets of the outcome space and scores are assigned to each alternative 
(hence, Approval). Given a subset of alternatives, two different GAMs may assign different 
positive scores to the same approved alternative (hence, Generalized). Then, a given quantile of 
the score distribution induced by the players’ choices is implemented. Our main finding is that 
every generic6 GMR – including the Condorcet winner alternative – can be Nash-implemented 
by some GAM. We explain how to derive a GAM for each GMR and we explicitly design the 

1 In the present paper’s context, a welfare optimum is the outcome of social choice rule (Maskin, 1999), the set of 
alternatives is A = [0, 1] and the set of possible preference relations consists of the single-peaked ones in A.

2 That is, restricting attention to anonymous rules that implement each of the alternatives for at least one preference 
profile.

3 Experimental evidence shows that strategy-proof mechanisms need not lead a large share of the agents to reveal their 
true type (see Attiyeh et al., 2000; Kawagoe and Mori, 2001; Kagel and Levin, 1993 and Cason et al., 2006 among 
others).

4 A game/mechanism Nash-implements a social choice rule if it admits a unique equilibrium outcome which coincides 
with the outcome of the social choice rule (see Maskin, 1999).

5 More precisely, their sequential mechanisms are obtained by modifying a sequential voting scheme suggested by 
Bowen (1943).

6 We consider that a GMR is generic if its interior phantoms – if any – are all non-identical.
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one that implements the Condorcet winner alternative, also known as the pure median rule. To 
our knowledge, this is the first simple simultaneous game that implements the Condorcet winner 
alternative and arguably this finding is of interest on its own. The equilibrium strategies of most 
players7 take an easy “I approve every alternative at most (least) as large as the implemented 
alternative” form. In fact, every player with a preferred alternative to the left (right) of the imple-
mented one approves the implemented alternative and all the alternatives to its left (right). That 
is, GAMs not only Nash-implement GMRs, but also promote sincerity and agreement, in the 
sense that most players include both their ideal policies and the implemented outcome in their 
approval sets.

Naturally, the present analysis relates to the wider Approval voting literature. Approval vot-
ing has been studied since Weber (1995) and Brams and Fishburn (1983), and has been shown to 
exhibit interesting properties in a variety of contexts: For example, it improves the quality of deci-
sions in common value problems compared to plurality rule (Bouton and Castanheira, 2012) and 
leads to the sincere revelation of preferences in certain private value settings (see Laslier, 2009;
Laslier and Sanver, 2010 and Núñez, 2014). As we show, in the single-peaked domain Approval 
voting can additionally help a society reach, essentially, every feasible welfare optimum.

In what follows we describe the setting (section 2) and present an example (section 3). Then 
we provide our formal results and explain how to implement the Condorcet winner through a 
GAM (section 4).

2. The setting

2.1. Basic concepts and definitions

Let A := [0, 1] denote the set of alternatives and N := {1, . . . , n} the set of players with n ≥ 2. 
Let U be the set of single-peaked preferences. Each player i has utility function ui in U with 
ui(x) the utility of player i when x ∈ A is implemented. Each player i has a unique peak, ti , 
so that ui(x

′) < ui(x
′′) when x′ < x′′ ≤ ti and when ti ≤ x′′ < x′.8 We let t = (t1, . . . , tn) stand 

for a peak profile and u = (u1, . . . , un) ∈ U := ∏n
j=1 U . A social choice function is a function 

f : U → A that associates every u ∈ U with a unique alternative f (u) in A. For any finite col-
lection of points x1, . . . , xs in [0, 1], we let m(x1, . . . , xs) denote their median: m(x1, . . . , xs)

is the smallest number in {x1, . . . , xs} which satisfies 1
s
#{xi | xi ≤ m(x1, . . . , xs)} ≥ 1

2 and 
1
s
#{xi | xi ≥ m(x1, . . . , xs)} ≥ 1

2 . A social choice function is a generalized median rule (GMR) 
if there is some collection of points p1, . . . , pn−1 in [0, 1] such that, for each u ∈ U , f (u) =
m(t, p1, . . . , pn−1). We refer to p1, . . . , pn−1 as the phantoms of the GMR. A GMR is consid-
ered to be generic if its interior phantoms – if any – are non-identical.

A mechanism is a function θ : S → A that assigns to every s ∈ S, a unique element θ(s) in 
A, where S := ∏n

i=1 Si and Si is the strategy space of player i. Given a mechanism θ : S → A, 
the strategy profile s ∈ S is a Nash equilibrium of θ at u ∈ U , if ui(θ(si , s−i )) ≥ ui(θ(s′

i , s−i )

for all i ∈ N and any s′
i ∈ Si . Let Nθ(u) be the set of Nash equilibria of θ at u. The mechanism 

θ implements the social choice function f in Nash equilibria if for each u ∈ U , a) there exists 
s ∈ Nθ(u) such that θ(s) = f (u) and b) for any s ∈ Nθ(u), θ(s) = f (u).

7 If a player’s peak coincides with the equilibrium outcome, then this player may be employing a different kind of 
strategy.

8 For simplicity, we assume that ti �= tj for any i, j ∈ N . Our results are not affected when relaxing this constraint.
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2.2. Generalized approval mechanisms

We let B denote the collection of closed intervals of A.9 A GAM is a mechanism θ : Bn →
A which requires each player to play simultaneously a strategy in B and determines for each 
strategy profile some alternative in A. For each bi ∈ B, we write bi = minbi and bi = maxbi . 
The set B includes elements of different dimensions: singletons and positive length intervals. 
Since each bi is a convex set, its dimension is well-defined so that for each approval profile b =
(bi, b−i ), we let dim(b) = maxi∈N dim(bi). The set of zero-dimensional and one-dimensional 
strategies are respectively labeled by B0 and B1 with B = B0 ∪ B1. Similarly, Bn

0 denotes the 
set of profiles in which every player plays a singleton and Bn

1 the set of profiles such that at least 
one player plays a one-dimensional strategy.

In order to state a precise definition of a GAM , we let η : R → R be a differentiable and 
strictly increasing function with η(0) = 0 and η(1) = 1 and q a non-negative real number. We 
assume that when player i submits the interval bi , he is endowed with a weight of q + η(bi) −
η(bi) to be distributed over bi . More precisely, if dim(bi) = 1, then the strategy bi assigns an 
individual score of sx(bi, q, η) to each x ∈ [0, 1] as follows:

sx(bi, q, η) = q

bi − bi

+ η′(x) for any x ∈ bi and sx(bi, q, η) = 0 otherwise,

so that s(bi, q, η) = ∫ 1
0 sx(bi, q, η)dx equals q +η(bi) −η(bi) as defined. On the contrary, when 

dim(bi) < dim(b), bi is a singleton and some player announces a one-dimensional interval, we 
let sx(bi, q, η) = 0 for every x ∈ [0, 1] so that his strategy is not taken into account.

Collectively, each profile b in Bn
1 assigns to each alternative x a score of sx(b, q, η) with 

sx(b, q, η) = ∑n
i=1 sx(bi, q, η). Hence, the score distribution is the function φq,η : Bn

1 ×[0, 1] →
[0, 1] such that

φq,η(b, z) =
z∫

0

sx(b, q, η)∑n
i=1 s(bi, q, η)

dx.

A GAM θα,q,η associates any profile b ∈ Bn
0 with θα,q,η(b) = m(b1, b2, . . . , bn)

10 and any 
profile b ∈ Bn

1 with

θα,q,η(b) = min{x ∈ [0,1] | φq,η(b, x) = α}, where α ∈ (0,1).

In other words, a GAM selects the α-quantile of the distribution endogenously generated by b
given q and η when at least some player announces a positive length interval; otherwise, it selects 
the median of the announced singletons. In what follows, we write θ rather than θα,q,η.

The initial step is to show that any GAM is well-defined.

Lemma 1. For any admissible q , α and η, the associated GAM is well-defined.

9 This assumption can be relaxed by allowing any finite union of closed and convex subsets of A to be the set of pure 
strategies. Relaxing it however would imply more cumbersome notation and proofs since then two strategies that differ 
by a zero-measure set can have equivalent consequences.
10 This assumption is made for the sake of completeness. We could use any alternative λ : [0, 1]n → [0, 1] rather than 
using the median of the singletons without affecting the results.
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Proof. Note first that for any b ∈ Bn
1 , sx(b,q,η)∑n

i=1 s(bi ,q,η)
≥ 0 for every x ∈ [0, 1]. It suffices to show 

that its integral over [0, 1] equals 1, which is equivalent to φq,η(b, 1) = 1. But this is satisfied 
since 

∫ 1
0 sx(b, q, η)dx = ∑n

i=1 s(bi, q, η). �
For each GAM θ , we let the points κ1, κ2, . . . , κn−1 denote the phantoms of θ , with κj =

max{0, min{1, η−1(γj )}} and γj = α(nq+j)−(n−j)q
(n−j)−α(n−2j)

, for each j ∈ {1, . . . , n − 1}. Note that if 

η−1(γj ) ∈ (0, 1), then κj = η−1(γj ). Moreover, by the means of standard algebraic manipula-
tions, one can show that for each j ∈ {1, . . . , n −1}, each q ∈ R

+, and each α ∈ (0, 1), γj < γj+1. 
The previous inequality, combined with η being differentiable and strictly increasing, implies that 
0 ≤ κ1 ≤ κ2 ≤ . . . ≤ κn−1 ≤ 1, and that as long as κi, κj ∈ (0, 1), κi �= κj .

For each j ∈ {1, . . . , n − 1} and each x ∈ [0, 1], we let B(j, x) := {
b ∈ Bn | #{bi = [0, x]} =

n − j and #{bi = [x, 1]} = j}}. Any profile b in B(j, x) has n − j players playing [0, x] and j
players playing [x, 1]. Note that θ(b) = θ(b′) if b, b′ ∈ B(j, x).

Lemma 2. If θ is a GAM , j ∈ {1, . . . , n − 1}, and b ∈ B(j, x) with x ∈ (0, 1) then a) θ(b) = x

if and only if x = κj ; b) θ(b) > x if and only if κj > x; and c) θ(b) < x if and only if κj < x.

Proof. For each j ∈ {1, . . . , n − 1}, each x ∈ (0, 1) and any b ∈ B(j, x), the distribution φ(b, x)

satisfies φ(b, x) = (n−j)η(x)+(n−j)q
qn+(n−j)η(x)+j (1−η(x))

. Therefore, since η is differentiable and strictly in-

creasing in (0, 1), ∂
∂x

φ(b, x) > 0 for each x ∈ (0, 1). This implies that, if φ(b, x) = α for some 

x ∈ (0, 1), then x is unique and φ(b, x) = (n−j)η(x)+(n−j)q
qn+(n−j)η(x)+j (1−η(x))

= α ⇔ x = η−1(γj ) = κj , 
which proves a). Moreover, each b ∈ B(j, x) with x < κj satisfies φ(b, x) < α since φ(b, x) is 
strictly increasing in x, and thus θ(b) > x. Similarly, each b ∈ B(j, x) with θ(b) > x is such that 
φ(b, x) < α, which implies x < κj and proves b). A symmetric argument proves c) concluding 
the proof. �

Notice that by the definition of a GAM – in specific by the fact that α ∈ (0, 1) – it follows 
that θ(b) > x when b ∈ B(n, x) and θ(b) < x when b ∈ B(0, x) for every x ∈ [0, 1].

3. An example: the median approval mechanism

In this section we present an example that illustrates how a specific GAM works for a simple 
class of preference profiles. We consider a society composed of three individuals with peaks 
such that 0 = t1 < t2 < t3 = 1. The Approval mechanisms that we consider throughout have the 
following common structure: a) Every player simultaneously and independently announces an 
interval bi ∈ B, b) these intervals generate a score distribution, and c) the mechanism implements 
θ(b) which equals some quantile of the score distribution such as the median. The Approval 
mechanisms differ in how this distribution is generated and in the quantile of the distribution that 
is implemented.

While the general structure is discussed in the rest of the paper, we stick here to the simplest 
interesting score assignment process: That is, we assume that when player i submits the interval 
bi , he assigns an individual score sx(bi) to each x ∈ [0, 1] as follows:

sx(bi) = 1 for any x ∈ bi and sx(bi) = 0 otherwise.
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Collectively, each strategy profile b assigns a score of sx(b) to each alternative x with sx(b) =∑n
i=1 sx(bi). If at least one player submits a positive length interval, the distribution is the func-

tion φ : Bn
1 × [0, 1] → [0, 1] such that

φ(b, z) =
z∫

0

sx(b)∑n
i=1(bi − bi)

dx.

The Median Approval mechanism associates any profile b with the median θ(b) of the score 
distribution (when φ is continuous, φ(b, θ(b)) = 1

2 , while when all players announce a singleton, 
θ(b) corresponds to the median of these singletons).

We first notice that for any profile b with θ(b) �= ti and bi ∈ B0, player i can effectively move 
the median of the score distribution closer to her peak, ti ∈ (0, 1), by submitting a sufficiently 
small – but non-degenerate – interval containing ti . Hence, in equilibrium it must be the case that 
an individual whose peak does not coincide with the outcome uses a one-dimensional strategy 
and, in particular, he uses [0, θ(b)] if ti < θ(b) and [θ(b), 1] if ti > θ(b). This is so because plac-
ing weight to alternatives to the left of the implemented one shifts the implemented alternative 
to the left and vice versa.

Note that for the three players example that we consider, θ([0, x], [0, x], [x, 1]) = 1−x
2 if x ≤

1
3 and θ([0, x], [0, x], [x, 1]) = 1+x

4 if x ≥ 1
3 . Similarly, θ([0, x], [x, 1], [x, 1]) = 2+x

4 if x ≤ 2
3

and θ([0, x], [x, 1], [x, 1]) = 2−x
2 if x ≥ 2

3 . Therefore, θ([0, x], [0, x], [x, 1]) = x if and only if 
x = κ1 = 1

3 and θ([0, x], [x, 1], [x, 1]) = x if and only if x = κ2 = 2
3 . In other words, when n = 3, 

the phantoms of the Median Approval mechanism are κ1 = 1
3 and κ2 = 2

3 .
The previous arguments suggest that: a) when t2 < 1

3 the unique equilibrium is ([0, 13 ], [0, 13 ],
[ 1

3 , 1]) with outcome 1
3 and b) when t2 > 2

3 the unique equilibrium is ([0, 13 ], [ 1
3 , 1], [ 1

3 , 1]) with 
outcome 2

3 . But what happens when t2 ∈ [ 1
3 , 23 ]? Then, in any equilibrium b, player 1 still uses 

[0, θ(b)] and player 3 still uses [θ(b), 1], but player 2 can use a different kind of strategy and 
have his peak implemented. Indeed, when, for example, t2 ∈ [ 1

3 , 12 ] an equilibrium can be such 
that θ([0, t2], [0, 4t2 − 1], [t2, 1]) = t2. In these cases the equilibrium need not be unique, as the 
median player has many best responses, but the equilibrium outcome is unique and coincides with 
the peak of the median player. In Fig. 1 we present the unique equilibrium outcome of the Median 
Approval mechanism for all the preference profiles that we considered here. In Fig. 2 we present 
the scores assigned to each alternative, sx(b), in an equilibrium of the form θ([0, t2], [0, 4t2 − 1],
[t2, 1]) = t2.

4. Formal analysis

We prove first how best replies are under a GAM (Lemma 3), then prove that a GAM Nash-
implements a GMR (Proposition 1) and, finally, establish that for every generic GMR there 
exists a GAM that Nash-implements it (Theorem 1).

Next, we assert that if a player whose peak lies to the left (right) of the outcome uses a best 
response, then he approves of all the alternatives to the left (right) of the implemented outcome.

Lemma 3. If θ is a GAM , and b = (bi, b−i ) ∈ Bn with ti < θ(b) (ti > θ(b)), then bi is a best 
response to b−i if and only if bi = [0, θ(b)] (bi = [θ(b), 1]).
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Fig. 1. Equilibrium outcome as a function of t2.

Fig. 2. An equilibrium strategy profile that implements the ideal policy of the median voter.

Proof. We only provide a proof for the case in which ti < θ(b) since the proof for ti > θ(b) is 
symmetric. We first consider a strategy profile b = (bi, b−i ) with ti < θ(b) and bi �= [0, θ(b)]
and argue that bi cannot be a best response of player i; and then we consider a strategy profile b
with ti < θ(b) and bi = [0, θ(b)] and argue that bi is a best response of player i.

When ti < θ(b) and bi �= [0, θ(b)] there are three possibilities regarding bi : a) θ(b) > bi , b) 
θ(b) < bi ; and c) θ(b) ∈ bi . If θ(b) > bi and dim(b) = 0 then i can submit a sufficiently small 
– but non-degenerate – interval centered at ti and bring the implemented outcome arbitrarily 
closer to his peak.11 If θ(b) > bi , dim(b) = 1 and dim(bi) = 0 then i can deviate to [ti , θ(b)] and 
induce φ(([ti , θ(b)], b−i ), θ(b)) > φ(b, θ(b)) and φ(([ti , θ(b)], b−i ), ti ) ≤ φ(b, ti ); and hence 
bring the implemented outcome closer to her peak. If θ(b) > bi and dim(bi) = 1 then, there 
exists β ∈ (0, θ(b)) such that θ(b) = θ([β, θ(b)], b−i ). This is so because the outcome of a GAM

does not depend on the specific interval that one submits when this interval contains outcomes 
only to the left (right) of the implemented one, but only on the total weight assigned to policies 

11 When ti = 0, the player can submit an interval [0, ε], with a sufficiently small ε > 0, to the described effect (the case 
of ti = 1 is symmetric).
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on the left (right) of the implemented outcome. We assume that i deviates to such a strategy, 
[β, θ(b)], that delivers the same outcome as bi .12 After this intermediate step, we simply consider 
marginal changes in β . Indeed, one can show that ∂

∂β
φ(([β, θ(b)], b−i ), θ(b)) < 0 which means 

that the implemented outcome θ([β, θ(b)], b−i) continuously decreases when β decreases; and 
this clearly improves the payoff of player i. That is, bi cannot be a best response of player i. 
Case b) admits a completely symmetric proof. Case c) is actually simpler since it is such that 
bi ≤ θ(b) ≤ bi , so one can consider directly marginal changes of bi and/or bi without the need 
for the described intermediate step.

Now consider that ti < θ(b) and bi = [0, θ(b)], and that there exists b′
i such that

ui(θ(b′
i , b−i )) > ui(θ(b)). If bi �⊂ b′

i then φ((b′
i , b−i ), θ(b)) < φ(b, θ(b)) and hence θ(b′

i , b−i ) >
θ(b). If bi ⊂ b′

i then b′
i = [0, β] for some β > θ(b). One can show that ∂

∂β
φ(([0, β], b−i ),

θ(b)) < 0 when β > θ(b). That is, a transition from bi to b′
i will induce φ((b′

i , b−i ), θ(b)) <
φ(b, θ(b)) and hence θ(b′

i , b−i ) > θ(b). In both cases the assumption that bi = [0, θ(b)] is not a 
best response is contradicted and this concludes the argument. �

Next we establish that a GAM implements a GMR in Nash equilibria.

Proposition 1. If the mechanism θ : Bn → A is a Generalized Approval Mechanism (GAM) 
then:

a) there is an equilibrium in pure strategies for every admissible preference profile; and
b) in every equilibrium b of θ we have θ(b) = m(t1, t2, . . . , tn, κ1, . . . , κn−1).

Proof. Take some GAM mechanism θ : Bn → A. The proof first establishes the existence of 
an equilibrium (Step A.) and then fully characterizes the unique equilibrium outcome (Step B.). 
For short, we write (t, κ) rather than (t1, t2, . . . , tn, κ1, . . . , κn−1).

Step A. There is some equilibrium b of θ with θ(b) = m(t, κ).
Step A. is divided into two cases: There is either no th with th = m(t, κ) (Step A.I.), or there 

is a th with th = m(t, κ) (Step A.II.).
Step A.I. There is no th with th = m(t, κ). Since there is no th with th = m(t, κ), there must 

exist j ∈ {1, . . . , n − 1} such that κj = m(t, κ). Therefore, the number of elements located below 
and above κj in (t, κ) is equal to n − 1, which is equivalent to:

#{i ∈ N | ti < κj } + (j − 1)︸ ︷︷ ︸
elements strictly lower than κj

= #{i ∈ N | ti > κj } + (n − j − 1)︸ ︷︷ ︸
elements strictly higher than κj

= n − 1.

The previous equalities imply that #{i ∈ N | ti < κj } = n − j and #{i ∈ N | ti > κj } = j . Let 
b ∈ B(j, κj ) be such that:

bi :=
{ [0, κj ] if ti < κj ,

[κj ,1] if ti > κj .

By Lemma 2, θ(b) = κj and therefore θ(b) = m(t, κ). Since every player is playing a best 
response as defined in Lemma 3, b is an equilibrium of the game and this concludes Step A.I.

Step A.II. There is some th with th = m(t, κ). If there exists j ∈ {1, . . . , n − 1} such that 
κj = th, then either j = n − h or j = n − h + 1. Using the same line of reasoning as in A.I., one 

12 In specific, β is uniquely defined by η(θ(b)) − η(β) = η(bi ) − η(bi ).
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can show that: a) when j = n − h, any b ∈ B(n − h, th) is an equilibrium with θ(b) = th and b) 
when j = n − h + 1, any b ∈ B(n − h + 1, th) is an equilibrium with θ(b) = th.

If th = m(t, κ) and th �= κj , there are n − 1 values strictly smaller than th in (t, κ). There are 
essentially two cases here: a) th ∈ (κ1, κn−1) and b) th < κ1 (the proof for the case th > κn−1 is 
symmetric). Below, we consider both cases in turn.

a) Choose j , such that 1 ≤ j ≤ n − 2, with κj < th = m(t, κ) < κj+1. Moreover #{κl | κl <

th} = j and #{i ∈ N | ti < th} = h − 1 so that: j + h − 1 = n − 1 =⇒ j = n − h. Therefore, 
κn−h < th < κn−h+1.

For each strategy c∗ ∈ B, we let b = (c∗, b−h) denote a strategy profile with:

bi =
⎧⎨
⎩

[0, th] if ti < th,
c∗ if ti = th,
[th,1] if ti > th.

Our objective is to prove that there is some c∗ such that θ(b) = th and b is an equilibrium.
By Lemma 2, it follows that if κn−h ∈ (0, 1), θ(b′) = κn−h < th for any b′ ∈ B(n − h, κn−h)

and, if κn−h = 0, θ(b′) < th for any b′ ∈ B(n −h, th). Again, due to Lemma 2, if κn−h+1 ∈ (0, 1), 
θ(b′) = κn−h+1 > th for any b′ ∈ B(n − h + 1, κn−h+1) and if κn−h+1 = 1, θ(b′) > th for any 
b′ ∈ B(n − h + 1, th). Hence, it follows that θ([0, th], b−h) < th and θ([th, 1], b−h) > th, so 
that there exists some c∗ with θ(b) = th. This is so because when the rest of the players behave 
according to b−h, h can smoothly deviate from [0, th] to [th, 1] – first, continuously increase the 
right bound of his interval up to 1, and, then, continuously increase the left bound of his interval 
up to his peak – and induce a continuous change of the implemented policy from θ([0, th], b−h)

to θ([th, 1], b−h).
In order to prove that b = (c∗, b−h) with θ(b) = th is an equilibrium, suppose by contradiction 

that there exists some i ∈ N with a profitable deviation b′
i . Yet, as proved by Lemma 3, any player 

with a peak different than th is playing a best response in b. Moreover, the player with peak th is 
also playing a best response since θ(b) = th. Therefore, b must be an equilibrium concluding a) 
in Step A.

b) In this case, th = m(t, κ) < κ1, and hence, h = n. Therefore, in any equilibrium b, the n −1
players with peak strictly lower than tn play [0, tn]. Moreover, θ([0, tn], b−n) < tn, since for any 
b ∈ B(0, x), θ(b) < x for every x ∈ (0, 1); and θ([tn, 1], b−n) > tn, since for any b ∈ B(1, x), 
θ(b) > x if κ1 > x (by Lemma 2). Hence, the existence of an interval A∗ such that θ(bA∗

) = tn
is ensured. This, in turn, ensures the existence of an equilibrium similar to the one described in 
a), which concludes the proof of step A.

Step B. Any equilibrium b of θ satisfies θ(b) = m(t, κ).
For each profile (t, κ), we let i′ = #{i ∈ N | ti ≤ m(t, κ)} denote the number of players with 

peak lower than m(t, κ) and j ′ = #{j ∈ {1, . . . , n − 1} | κj ≤ m(t, κ)} stand for the number of 
phantoms lower than m(t, κ). Since (t, κ) has 2n − 1 elements, it follows that i′ + j ′ ≥ n so that 
n − i′ ≤ j ′.

Suppose, by contradiction, that there is some GAM , θ , that admits an equilibrium b with 
1 > θ(b) > m(t, κ).13 The rest of the proof inspects the different cases for each value of n − i′. 
A symmetric argument applies when 0 < θ(b) < m(t, κ).

13 An equilibrium with θ(b) = 1 can be trivially ruled out since it requires that all players announce singletons. Obvi-
ously, any i with ti < 1 can gain by deviating to [ti , ti + ε] for ε > 0 and small enough.
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Step B.I. n − i′ ∈ {0, n}. Assume first that there is some equilibrium b with n − i′ = 0. It 
follows that i′ = n players have a peak lower than m(t, κ). Since, by assumption, m(t, κ) <
θ(b), Lemma 3 implies that each player i plays bi = [0, θ(b)]. However, by definition θ(b) is 
the α-quantile of the sample generated by b given q and η. Since α ∈ (0, 1), it follows that 
θ(b) ∈ (0, θ(b)) which is impossible. If there is some equilibrium b with n − i ′ = n, then all 
players have a peak higher than m(t, κ). Hence, a similar contradiction to the case with n − i′ = 0
arises, which concludes Step B.I.

Step B.II. n − i′ /∈ {0, n}. Assume now that there is some equilibrium b with n − i′ /∈ {0, n}
and let i′′ = #{i ∈ N | ti < θ(b)} denote the number of players with a peak strictly lower than the 
outcome θ(b). Since, by assumption, θ(b) > m(t, κ) it follows that i′ ≤ i′′.

Given that κj ≤ κj+1 for any j ∈ {1, 2, . . . , n − 2}, n − i′ ≤ j ′ and i′ �= n, the following 
inequality holds:

κn−i′ ≤ κj ′ ≤ m(t, κ).

If i′′ = n, there are n players with a peak strictly lower than θ(b). Lemma 3 implies that 
each player plays [0, θ(b)], which, in turn, implies that θ(b) is in the interior of [0, θ(b)], a 
contradiction. Therefore, i′′ ≤ n − 1 ⇔ n − i′′ ≥ 1. Moreover by definition we have that i′ ≤
i′′ ⇐⇒ n − i′′ ≤ n − i′ which implies that

κn−i′′ ≤ κn−i′ ≤ κj ′ ≤ m(t, κ).

If there is no th with th = θ(b) then by Lemma 3, i′′ players play [0, θ(b)] and n − i′′ players 
play [θ(b), 1]. Therefore, b ∈ B(n − i′′, θ(b)). For b to be an equilibrium it must be the case that 
θ(b) = κn−i′′ which contradicts θ(b) > m(t, κ). Thus, there is no equilibrium b with θ(b) �= th.

If there is some th with th = θ(b) then i′′ players play [0, θ(b)], n − i′′ − 1 players play 
[θ(b), 1] and player h plays the strategy bh. If bh = [θ(b), 1] then θ(b) = κn−i′′ which contradicts 
θ(b) > m(t, κ). If bh �= [θ(b), 1] then th = θ(b) < θ([th, 1], b−h) with ([th, 1], b−h) ∈ B(n −
i′′, th). Hence, by Lemma 2, th < θ([th, 1], b−h) ⇐⇒ th < κn−i′′ . Thus, we have that th = θ(b) <
κn−i′′ which contradicts θ(b) > m(t, κ). Thus, there is no equilibrium b with θ(b) = th, which 
ends the proof. �

We now have all the tools that are necessary to state the main result of this paper.

Theorem 1. For every generic GMR there exists a GAM that Nash-implements it.

Proof. Take some generic GMR with phantom vector p = (p1, . . . , pn−1). We want to prove 
that there is some GAM with phantom vector κ = (κ1, . . . , κn−1) that Nash-implements it. Given 
the result of Proposition 1, it is sufficient to show that there exists a GAM with κ = p.

Assume first that every pj ∈ (0, 1). In this case, it suffices to set α ∈ (0, 1), q ∈ R
+ and some 

function η so that, for each j ∈ {1, . . . , n − 1}:

pj = η−1(
α(nq + j) − (n − j)q

(n − j) − α(n − 2j)
), (1)

leading to κ = p as wanted.
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Assume now that there is some pair a, b ∈ {1, . . . , n − 1} such that pa = 0 and/or pb = 1 with 
pi ∈ (0, 1) if i ∈ (a, b).14 As previously argued, it must be the case that p1 ≤ p2 ≤ . . . ≤ pn−1. 
Hence, for any s ≤ a, ps = 0 and for any t ≥ b, pt = 1.

Take now some q and α such that

α(nq + a) − (n − a)q

(n − a) − α(n − 2a)
= 0 and

α(nq + b) − (n − b)q

(n − b) − α(n − 2b)
= 1. (2)

This ensures that κa = 0 and κb = 1. The previous equalities are equivalent to

q = aα

n(1 − α) − a
, (3)

while α depends on the value of a + b. More precisely,

α = 1/2 if a + b = n, (4)

α = 1

(n − a − b)n
((n − a)(n − b) − √

ab(n − a)(n − b)) if a + b < n (5)

and

α = 1

(n − a − b)n
((n − a)(n − b) + √

ab(n − a)(n − b)) if a + b > n. (6)

Moreover, since 0 ≤ κ1 ≤ κ2 ≤ . . . ≤ κn−1 ≤ 1, it follows that, for any s ≤ a, κs = 0 and for any 
t ≥ b, κt = 1.

If b = a + 1, then we are done, since κ = p. If b > a + 1, then by assumption, any pj

with j ∈ {a, . . . , b} ∩ {1, . . . , n − 1} satisfies pj ∈ (0, 1). Then, given that q and α are given 
by (1), it is enough to suitably select η such that for any j ∈ {a, . . . , b} ∩ {1, . . . , n − 1}, pj =
η−1(

α(nq+j)−(n−j)q
(n−j)−α(n−2j)

) which ensures that κ = p as wanted. �
Finally, we discuss some examples that show the usefulness of the analysis above. The first 

one is concerned with the implementation of the Condorcet winner. The second attempts to il-
lustrate how to implement GMRs with interior phantoms.

Example 1: Implementing the Condorcet winner. Let N = {1, 2, 3} be the set of players with 
t1 < t2 < t3 and set q = 1, α = 1/2 and η(x) = x. Namely, each player is endowed with a weight 
of 1 +bi −bi and the outcome selected corresponds to the median of the distribution generated by 
b. For short, we let θ(b) denote the mechanism outcome and φ(b, z) the cumulative distribution 
associated to any profile b. The unique equilibrium outcome of this game is the selection of t2, 
the median of the peaks and the Condorcet winner policy.

We first prove that t2 is an equilibrium outcome and then show that it is the unique one. Let b =
(bi, b−i ) be a strategy profile with θ(b) = t2 for any t2 ∈ (0, 1). If b is an equilibrium, Lemma 3
implies that b1 = [0, t2] and b3 = [t2, 1]. Thus, in order to prove that there is an equilibrium with 
outcome t2, it suffices to show that there is some b2 with b = ([0, t2], b2, [t2, 1]) satisfying θ(b) =
t2. If b2 = [0, t2], φ(b, t2) =

∫ t2
0

2+ 2
t2

3+2t2+1−t2
dx > 1

2 so that θ(b) < t2, whereas, if b2 = [t2, 1], 

14 To ensure that α ∈ (0, 1), when p1 = 0 and pn−1 < 1, we consider that b = n − 1
2 and when p1 > 0 and pn−1 = 1, 

we consider that a = 1 .
2
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φ(b, t2) =
∫ t2

0

1+ 1
t2

3+t2+2(1−t2)
dx < 1

2 which implies that θ(b) > t2. Therefore, player 2 can change 
smoothly her strategy from [0, t2] to [t2, 1] and find a strategy b2 which leads to φ(b, t2) = 1/2
– that is, to the implementation of t2. The precise strategy of player 2 depends on the value 
of t2. For each t ∈ (0, 1), let w(t) = √

1 − 2t + 4t2 + 2t − 1. If t2 ≤ 1/2, then b2 = [0, w(t2)]
ensures that θ(b) = t2, whereas, when t2 ≥ 1/2, then b2 = [1 − w(1 − t2), 1] ensures that t2 is 
the outcome.

Now, in order to prove that there is no other possible equilibrium outcome, assume by con-
tradiction that there is some z �= t2 elected at some equilibrium b. Assume that z < t2, the case 
with z > t2 being symmetric. If z ∈ (t1, t2), then, due to Lemma 3, b = ([0, z], [z, 1], [z, 1]) since 

t1 < z < t2 < t3. But then φ(b, z) = ∫ z

0
1+ 1

z

5−z
dx so that φ(b, z) < 1

2 for any z ∈ (t1, t2). In other 
words, it is not possible that such a strategy profile is an equilibrium. If z ∈ [0, t1), then b must 
be such that the three players play [z, 1] which leads to an outcome larger than z. Finally, if 
z = t1, then in any equilibrium b, players 2 and 3 play b2 = b3 = [t1, 1]. However, if player 
1 plays [0, t1], then φ(([0, t1], b2, b3), t1) < 1

2 for any t1 ∈ [0, 1]. Thus, θ([0, t1], b2, b3) > t1. 
Yet, since [0, t1] is the best response of any player with peak to the left of t1, it follows that 
[0, t1] ∈ arg minb1∈B θ(b1, b2, b3). Therefore, θ(b1, b2, b3) > t1 for any b1 ∈ B so that there is 
no equilibrium with outcome t1. All in all, the unique equilibrium outcome associated with θ is 
t2.

To see how the previous argument extends to any number of players, consider that the number 
of players is odd.15 We let n = 2k + 1 for some non-negative integer k and let t∗ denote the 
median peak of the n players. It follows that there are exactly k players with a peak smaller 
than t∗ and k players with a peak larger than t∗. We now set q = k, α = 1/2 and η(x) = x. In 
other words, each player is now endowed with a weight of k + bi − bi and the outcome selected 
corresponds to the median of the distribution generated by b. Using the equalities (3) and (4) in 
the proof of Theorem 1, the previous specifications ensure that half of the phantoms are located 
at zero and half of them at one, which leads to the implementation of the median. In equilibrium, 
the k players with a peak smaller than t∗ approve of [0, t∗] whereas the k ones with a peak larger 
than t∗ approve of [t∗, 1]. The player with peak at t∗ just needs to play some strategy b∗

i that 
ensures that the median of the profile equals t∗. As in the case with just three players, one can 
prove by continuity that such strategy exists since the median of the score distribution is smaller 
than t∗ when he plays [0, t∗] and larger than t∗ when he plays [t∗, 1].

Example 2: A GAM with interior phantoms. If we set q = 0, α = 1
2 and η(x) = x, we get the 

Median Approval mechanism discussed in Section 3. The phantoms of this Approval mechanism 
must satisfy, for any j ∈ {1, 2, . . . , n − 1}, η(κj ) = j+q(2j−n)

n
⇐⇒ κj = j

n
(as already shown in 

Section 3, when N = {1, 2, 3} we have κ1 = 1
3 and κ2 = 2

3 ). The equilibria with this mechanism in 
the case in which m(t1, t2, t3, 13 , 23 ) equals one of the peaks is similar to the ones of the Approval 
mechanism that implements the Condorcet winner.

15 This ensures the existence of a unique median player (or Condorcet Winner). When n = 2k for some k > 1, there 
are two median players: player k and player k + 1. Setting a = k and b = k + 1 and replacing these values in equalities 
(3) and (6) leads to the GAM with parameters q =

√
k2−1
2 + k−1

2 and α = q
2q+1 and η(x) = x for any x ∈ [0, 1]. This 

GAM implements the peak of the leftist median. Conversely, setting a = k − 1 and b = k in the equalities (3) and (5) 
leads to the GAM with parameters q =

√
k2−1
2 + k−1

2 and α = kq+q
2kq+k−1 and η(x) = x for any x ∈ [0, 1]. This GAM

implements the peak of the rightist median player.
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However, in the precise case in which m(t1, t2, t3, 13 , 23 ) = 1
3 (the case m(t1, t2, t3, 13 , 23 ) = 2

3
being symmetric), the logic is different. Indeed, the mechanism admits a unique equilibrium b∗
with b∗

1 = b∗
2 = [0, 13 ] and b∗

3 = [ 1
3 , 1]. In general, if the equilibrium outcome coincides with a 

phantom and not with a type, there is a unique equilibrium (all players playing either to the left or 
to the right of the outcome) whereas this is not the case when a player’s peak is the equilibrium 
outcome (this player can play in several ways, while the rest of the players play either to the left 
or to the right of the outcome).
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